
E-Notes on Software Reliability Engineering

UNIT-IV

 Software NHPP Models

Although some basic and advanced Markov models are presented in the previous

sections, some NHPP models are mentioned here due to their significant impact

on the software reliability analysis. Such a model simply models the failure

occurrence rate as a function of time (see e.g., Section 2.4). Hopefully this

occurrence rate is decreasing when faults are removed as an effect of debussing.

Note that after the release, the failure occurrence rate should be a constant unless

the debugging is continued (Yang & Xie, 2000).

4.5.1. The Goel-Okumoto (GO) model

In 1979, Goel and Okumoto presented a simple model for the description of

software failure process by assuming that the cumulative failure process is NHPP

with a simple mean value function. Although NHPP models have been studied

before, see e.g. Schneidewind (1975), the GO-model is the basic NHPP model

that later has had a strong influence on the software reliability modeling history.

Model description

The general assumptions of the GO-model are

1) The cumulative number of faults detected at time t follows a Poisson

distribution.

2) All faults are independent and have the same chance of being detected.

3) All detected faults are removed immediately and no new faults are

introduced.

Specifically, the GO-model assumes that the failure process is modeled by an

NHPP model with mean value function m(t) given by

E-Notes on Software Reliability Engineering

The failure intensity function can be derived by

where a and b are positive constant. Note that The physical meaning

of parameter a can be explained as the expected number of faults which are

eventually detected. The quantity b can be interpreted as the failure occurrence

rate per fault.

The expected number of remaining faults at time t can be calculated as

The GO-model has a simple but interesting interpretation based on a model

for fault detection process. Suppose that the expected number of faults detected in

a time interval is proportional to the number of remaining faults, we

have that

where b is a constant of proportionality.

The above difference equation can be transformed into a differential

equation. Divide both sides by and take limits by letting tend to zero,

we get the following equation,

It can be shown that the solution of this differential equation, together with the

initial condition m(0) = 0, lead to the mean value function of the GO-model.

Note that both the GO-model and JM-model give the exponentially

decreasing number of remaining faults. It can be shown that these two models

cannot be distinguished using only one realization from each model. However,

the models are different because the JM-model assumes a discrete change of the

failure intensity at the time of the removal of a fault while the GO-model assumes

a continuous failure intensity function over the whole time domain.

E-Notes on Software Reliability Engineering

Parameter estimation

Denoted by the number of faults detected in time interval where

 and are the running times since the software testing

begins. The estimation of model parameters a and b can be carried out by

maximizing the likelihood function, see e.g. Goel & Okumoto (1979). The

likelihood function can be reduced to

Solving this equation to calculate the estimate of b, and then a can be estimated

as

Usually, the above two equations has to be solved numerically. It can also be

shown that the estimates are asymptotically normal and a confidence region can

easily be established. A numerical example is illustrated below.

Example 4.5. Suppose a software product is being tested by a group. Each time

when detecting the failure, it is removed and the time for repair is not computed

in the test time. The 30 test data of time to failures are recorded in Table 4.4.

Solving the likelihood equations, we get b = 0.0008 and a = 57. The

failure intensity function and the mean value function for this GO model are

and

E-Notes on Software Reliability Engineering

4.5.2. S-shaped NHPP models

The mean value function of the GO-model is exponential-shaped. Based on the

experience, it is observed that the curve of the cumulative number of faults is

often S-shaped as shown by Fig. 4.8, see e.g. Yamada et al. (1984).

E-Notes on Software Reliability Engineering

This can be explained by the fact that at the beginning of the testing, some

faults might be “covered” by other faults. Removing a detected fault at the

beginning does not reduce the failure intensity very much since the same test data

will still lead to a failure caused by other faults. Another reason of the S-shaped

behavior is the learning effect as indicated in Yamada et al. (1984).

Delayed S-shaped NHPP model

The mean value function of the delayed S-shaped NHPP model is

This is a two-parameter S-shaped curve with parameter a denoting the number of

faults to be detected and b corresponding to a fault detection rate. The

corresponding failure intensity function of this delayed S-shaped NHPP model is

The expected number of remaining faults at time t is then

Inflected S-shaped NHPP model

The mean value function of the inflected S-shaped NHPP model is

In the above a is again the total number of faults to be detected while b and c are

called the fault detection rate and the inflection factor, respectively. The intensity

function of this inflected S-shaped NHPP model can easily be derived as

E-Notes on Software Reliability Engineering

Given a set of failure data, for both delayed and inflated S-shaped NHPP models,

numerical methods have to be used to solve the likelihood equation so that

estimates of the parameters can be obtained.

4.5.3. Some other NHPP models

Besides the S-shaped models, there are many other NHPP models that extend the

GO-model for different specific conditions.

Duane model

The Duane model assumes that the mean value function satisfies

In the above, and are parameters which can be estimated by using

collected failure data. The mean value functions with and different

 are depicted by the Fig. 4.9.

It can be noted that when the Duane NHPP model is reduced to a

Poisson process whose mean value function is a straight line. In such a case, there

is no reliability growth. In fact, the Duane model can be used to model both

reliability growth and reliability deterioration which is common

in hardware systems.

The failure intensity function, is

E-Notes on Software Reliability Engineering

One of the most important advantages of the Duane model is that if we plot the

cumulative number of failure versus the cumulative testing time on a

log-log-scale, the plotted points tends to be close to a straight line if the model is

valid. This can be seen from the fact that the relation between m(t) and t can be

rewritten as

where ln and Hence, ln m(t) is a linear function of ln t and

due to this linear relation, the parameters and may be estimated

graphically and the model validity can easily be verified. In fact, this is called

first-model-validation-then-parameter-estimation approach (Xie & Zhao, 1993).

The Duane model gives an infinite failure intensity at time zero. Littlewood

(1984) proposed a modified Duane model with the mean value function

E-Notes on Software Reliability Engineering

The parameter k can be interpreted as the number of faults eventually to be

detected.

Log-power model

Xie & Zhao (1993) presented a log-power model. The mean value function of

this model can be written as

This model has shown to be useful for software reliability analysis as it is a pure

reliability growth model. It is also easy to use due to its graphical interpretation.

The plot of the cumulative number of failures at time t against t+1 will tend to be

a straight line on a log-double-log scale if the failures follow the log-power

model. This can be seen from the following relationship

The slope of the fitted line gives an estimation of b and its intercept on the

vertical axis gives an estimation of lna.

The failure intensity function of the log-power model can be obtained as

The failure intensity function is interesting from a practical point of view. The

log-power model is able to analyze both the case of strictly decreasing failure

intensity and the case of increasing-then-decreasing failure intensity function. For

example, if then of the above equation is a monotonic decreasing

function of t; Otherwise given is increasing if

and decreasing if

The estimation of the parameters a and b is also simple. Suppose total n

failures are detected during the a testing period (0,T] and the times to failures

E-Notes on Software Reliability Engineering

are ordered by The maximum likelihood estimation of a

and b is then given by:

and

They can be simply calculated without numerical procedures.

Musa-Okumoto model

Musa and Okumoto (1984) is another model for infinite failures. This NHPP

model is also called the logarithmic Poisson model. The mean value function is

The failure intensity function is derived as

Given a set of failure time data the maximum likelihood

estimates of the parameters are the solutions of the following equations:

These equations have to be solved numerically.

