
PL/SQL
UNIT III

PL/SQL is a combination of SQL along with the procedural features of programming languages.
It was developed by Oracle Corporation in the early 90's to enhance the capabilities of SQL.
PL/SQL is one of three key programming languages embedded in the Oracle Database, along
with SQL itself and Java.

The PL/SQL programming language was developed by Oracle Corporation in the late 1980s as
procedural extension language for SQL and the Oracle relational database. Following are
certain notable facts about PL/SQL −

•PL/SQL is a completely portable, high-performance transaction-processing language.

•PL/SQL provides a built-in, interpreted and OS independent programming environment.

•PL/SQL can also directly be called from the command-line SQL*Plus interface.

•Direct call can also be made from external programming language calls to database.

INTRODUCTION

Features of PL/SQL

•PL/SQL is tightly integrated with SQL.

•It offers extensive error checking.

•It offers numerous data types.

•It offers a variety of programming structures.

•It supports structured programming through functions and procedures.

•It supports object-oriented programming.

•It supports the development of web applications and server pages.

PL/SQL which is a block-structured language; this means that the PL/SQL programs are divided and
written in logical blocks of code. Each block consists of three sub-parts −

1. Declarations
This section starts with the keyword DECLARE. It is an optional section and defines all variables,
cursors, subprograms, and other elements to be used in the program.

2. Executable Commands
This section is enclosed between the keywords BEGIN and END and it is a mandatory section. It consists
of the executable PL/SQL statements of the program. It should have at least one executable line of
code, which may be just a NULL command to indicate that nothing should be executed.

3. Exception Handling
This section starts with the keyword EXCEPTION. This optional section contains exception(s) that
handle errors in the program.

BASIC SYNTAX

Every PL/SQL statement ends with a semicolon (;). PL/SQL blocks can be nested within other PL/SQL
blocks using BEGIN and END. Following is the basic structure of a PL/SQL block −

DECLARE

<declarations section>

BEGIN

<executable command(s)>

EXCEPTION

<exception handling>

END;

DECLARE

message varchar2(20):= 'Hello, World!';

BEGIN

dbms_output.put_line(message);

END;

/

The end; line signals the end
of the PL/SQL block. To run
the code from the SQL
command line, you may need
to type / at the beginning of
the first blank line after the
last line of the code.

S.No Date Type & Description

1

Numeric

Numeric values on which arithmetic operations are performed.

2

Character

Alphanumeric values that represent single characters or strings of characters.

3

Boolean

Logical values on which logical operations are performed.

4
Datetime

Dates and times

DATA TYPES

S.No Data Type & Description

1
PLS_INTEGER
Signed integer in range -2,147,483,648 through 2,147,483,647, represented
in 32 bits

2
BINARY_INTEGER
Signed integer in range -2,147,483,648 through 2,147,483,647, represented
in 32 bits

3 BINARY_FLOAT
Single-precision IEEE 754-format floating-point number

4 BINARY_DOUBLE
Double-precision IEEE 754-format floating-point number

5
NUMBER(prec, scale)
Fixed-point or floating-point number with absolute value in range 1E-130 to
(but not including) 1.0E126. A NUMBER variable can also represent 0

6 DEC(prec, scale)
ANSI specific fixed-point type with maximum precision of 38 decimal digits

7 DECIMAL(prec, scale)
IBM specific fixed-point type with maximum precision of 38 decimal digits

8 NUMERIC(pre, secale)
Floating type with maximum precision of 38 decimal digits

9
DOUBLE PRECISION
ANSI specific floating-point type with maximum precision of 126 binary
digits (approximately 38 decimal digits)

10
FLOAT
ANSI and IBM specific floating-point type with maximum precision of 126
binary digits (approximately 38 decimal digits)

11 INT
ANSI specific integer type with maximum precision of 38 decimal digits

12
INTEGER
ANSI and IBM specific integer type with maximum precision of 38 decimal
digits

13
SMALLINT
ANSI and IBM specific integer type with maximum precision of 38 decimal
digits

14
REAL
Floating-point type with maximum precision of 63 binary digits
(approximately 18 decimal digits)

DECLARE

num1 INTEGER;

num2 REAL;

num3 DOUBLE

PRECISION;

BEGIN

null;

END;

/

PL/SQL variables must be declared in the declaration section or in a package as a global variable. When
you declare a variable, PL/SQL allocates memory for the variable's value and the storage location is
identified by the variable name.

VARIABLE

Variable_name [CONSTANT] datatype [NOT NULL] [:= | DEFAULT initial_value]

Where, variable_name is a valid identifier in PL/SQL, datatype must be a valid PL/SQL data type

Some valid variable declarations along with their definition are shown below −

Sales number(10, 2);

pi CONSTANT double precision := 3.1415;

name varchar2(25);

address varchar2(100);

DECLARE
a integer := 10;
b integer := 20;
c integer;
f real;

BEGIN
c := a + b;
dbms_output.put_line('Value of c: ' || c);
f := 70.0/3.0;

dbms_output.put_line('Value of f: ' || f);
END;
/

When the above code is executed, it produces the following result −

Value of c: 30

Value of f: 23.333333333333333333

PL/SQL procedure successfully completed.

Variable Scope in PL/SQL

PL/SQL allows the nesting of blocks, i.e., each program block may contain another inner block. If a variable is

declared within an inner block, it is not accessible to the outer block. However, if a variable is declared and

accessible to an outer block, it is also accessible to all nested inner blocks. There are two types of variable scope

•Local variables − Variables declared in an inner block and not accessible to outer blocks.

•Global variables − Variables declared in the outermost block or a package.

Following example shows the usage of Local and Global variables in its simple form −

DECLARE

-- Global variables

num1 number := 95;

num2 number := 85;

BEGIN

dbms_output.put_line('Outer Variable num1: ' || num1);

dbms_output.put_line('Outer Variable num2: ' || num2);

DECLARE

-- Local variables

num1 number := 195;

num2 number := 185;

BEGIN

dbms_output.put_line('Inner Variable num1: ' || num1);

dbms_output.put_line('Inner Variable num2: ' || num2);

END;

END;

/

Outer Variable num1: 95

Outer Variable num2: 85

Inner Variable num1: 195

Inner Variable num2: 185

Assigning SQL Query Results to PL/SQL Variables

You can use the SELECT INTO statement of SQL to assign values to PL/SQL variables. For each item in
the SELECT list, there must be a corresponding, type-compatible variable in the INTO list. The following
example illustrates the concept. Let us create a table named CUSTOMERS −

DECLARE

c_id customers.id%type := 1;

c_name customers.name%type;

c_addr customers.address%type;

c_sal customers.salary%type;

BEGIN

SELECT name, address, salary INTO c_name, c_addr, c_sal FROM customers WHERE id = c_id;

dbms_output.put_line ('Customer ' ||c_name || ' from ' || c_addr || ' earns ' || c_sal);

END;

/

Customer Ramesh from Ahmedabad earns 2000

CREATE TABLE CUSTOMERS(ID INT NOT NULL, NAME VARCHAR (20) NOT NULL, AGE INT NOT NULL, ADDRESS

CHAR (25), SALARY DECIMAL (18, 2), PRIMARY KEY (ID));

PL/SQL provides the following types of loop to handle the looping requirements.

1. PL/SQL Basic LOOP

Basic loop structure encloses sequence of statements in between the LOOP and END

LOOP statements. With each iteration, the sequence of statements is executed and

then control resumes at the top of the loop.

Syntax

LOOPS IN PL/SQL

LOOP

Sequence of statements;

END LOOP;

Here, the sequence of statement(s) may be a single statement or a block of
statements. An EXIT statement or an EXIT WHEN statement is required to break
the loop.

https://www.tutorialspoint.com/plsql/plsql_basic_loop.htm
https://www.tutorialspoint.com/plsql/plsql_basic_loop.htm
https://www.tutorialspoint.com/plsql/plsql_basic_loop.htm

DECLARE

x number := 10;

BEGIN

LOOP

dbms_output.put_line(x);

x := x + 10;

IF x > 50 THEN

exit;

END IF;

END LOOP;

-- after exit, control resumes here

dbms_output.put_line('After Exit x is: ' || x);

END;

/

When the above code is executed at the SQL prompt, it produces the following
result −

10

20

30

40

50

After Exit x is: 60

PL/SQL procedure successfully completed.

You can use the EXIT WHEN statement instead of the EXIT statement −

DECLARE

x number := 10;

BEGIN

LOOP

dbms_output.put_line(x);

x := x + 10;

Exit WHEN x > 50;

END LOOP;

-- after exit, control resumes here

dbms_output.put_line('After Exit x is: ' || x);

END;

/

PL/SQL - WHILE LOOP Statement

A WHILE LOOP statement in PL/SQL programming language repeatedly executes
a target statement as long as a given condition is true.

Syntax

WHILE condition LOOP

sequence_of_statements

END LOOP;

DECLARE

a number(2) := 10;

BEGIN

WHILE a < 20 LOOP

dbms_output.put_line('value of a: ' || a);

a := a + 1;

END LOOP;

END;

/

value of a: 10

value of a: 11

value of a: 12

value of a: 13

value of a: 14

value of a: 15

value of a: 16

value of a: 17

value of a: 18

value of a: 19

PL/SQL - FOR LOOP Statement

A FOR LOOP is a repetition control structure that allows you to efficiently
write a loop that needs to execute a specific number of times.

Syntax

FOR counter IN initial_value .. final_value LOOP

sequence_of_statements;

END LOOP;

DECLARE

a number(2);

BEGIN

FOR a in 10 .. 20 LOOP

dbms_output.put_line('value of a: ' || a);

END LOOP;

END;

/

value of a: 10

value of a: 11

value of a: 12

value of a: 13

value of a: 14

value of a: 15

value of a: 16

value of a: 17

value of a: 18

value of a: 19

value of a: 20

PL/SQL procedure successfully completed.

Reverse FOR LOOP Statement

By default, iteration proceeds from the initial value to the final value, generally upward from the lower
bound to the higher bound. You can reverse this order by using the REVERSE keyword. In such case,
iteration proceeds the other way. After each iteration, the loop counter is decremented.

However, you must write the range bounds in ascending (not descending) order. The following program
illustrates this −

DECLARE
a number(2) ;

BEGIN
FOR a IN REVERSE 10 .. 20 LOOP
dbms_output.put_line('value of a: ' || a);

END LOOP;
END;
/

value of a: 20

value of a: 19

value of a: 18

value of a: 17

value of a: 16

value of a: 15

value of a: 14

value of a: 13

value of a: 12

value of a: 11

value of a: 10

PL/SQL procedure successfully completed.

Following is the flow of control in a For Loop −

•The initial step is executed first, and only once. This step allows you to declare and initialize any loop
control variables.

•Next, the condition, i.e., initial_value .. final_value is evaluated. If it is TRUE, the body of the loop is
executed. If it is FALSE, the body of the loop does not execute and the flow of control jumps to the next
statement just after the for loop.

•After the body of the for loop executes, the value of the counter variable is increased or decreased.

•The condition is now evaluated again. If it is TRUE, the loop executes and the process repeats itself
(body of loop, then increment step, and then again condition). After the condition becomes FALSE, the
FOR-LOOP terminates.

Following are some special characteristics of PL/SQL for loop −

 The initial_value and final_value of the loop variable or counter can be literals, variables, or

expressions but must evaluate to numbers. Otherwise, PL/SQL raises the predefined exception

VALUE_ERROR.

 The initial_value need not be 1; however, the loop counter increment (or decrement) must be 1.

 PL/SQL allows the determination of the loop range dynamically at run time.

PL/SQL - Nested Loops

PL/SQL allows using one loop inside another loop. Following section shows a few examples to illustrate the
concept.

The syntax for a nested basic LOOP statement in PL/SQL is as follows −

LOOP

Sequence of statements1

LOOP

Sequence of statements2

END LOOP;

END LOOP;

FOR counter1 IN initial_value1 .. final_value1LOOP

sequence_of_statements1

FOR counter2 IN initial_value2 .. final_value2 LOOP

sequence_of_statements2

END LOOP;

END LOOP;

WHILE condition1 LOOP

sequence_of_statements1

WHILE condition2 LOOP

sequence_of_statements2

END LOOP;

END LOOP;

DECLARE

i number(3);

j number(3);

BEGIN

i := 2;

LOOP

j:= 2;

LOOP

exit WHEN ((mod(i, j) = 0) or (j = i));

j := j +1;

END LOOP;

IF (j = i) THEN dbms_output.put_line(i || ' is prime');

END IF; i := i + 1;

exit WHEN i = 50;

END LOOP;

END;

/

The following program uses a nested basic loop to find the prime numbers
from 2 to 100 −

PL/SQL subprograms are named PL/SQL blocks that can be invoked with a set of
parameters. PL/SQL provides two kinds of subprograms −

•Functions − These subprograms return a single value; mainly used to compute and return a
value.
•Procedures − These subprograms do not return a value directly; mainly used to perform an
action.

Functions & Procedures

Creating a Procedure

A procedure is created with the CREATE OR REPLACE PROCEDURE
statement. The simplified syntax for the CREATE OR REPLACE PROCEDURE
statement is as follows −

CREATE [OR REPLACE] PROCEDURE procedure_name

[(parameter_name [IN | OUT | IN OUT] type [, ...])]

{IS | AS}

BEGIN

< procedure_body >

END procedure_name;

Where,

•procedure-name specifies the name of the procedure.

•[OR REPLACE] option allows the modification of an

existing procedure.

•The optional parameter list contains name, mode and

types of the parameters. IN represents the value that

will be passed from outside and OUT represents the

parameter that will be used to return a value outside of

the procedure.

•procedure-body contains the executable part.

•The AS keyword is used instead of the IS keyword for

creating a standalone procedure.

The following example creates a simple procedure that displays the string 'Hello World!' on the screen when executed.

CREATE OR REPLACE PROCEDURE greetings

AS

BEGIN

dbms_output.put_line('Hello World!');

END; /

When the above code is executed using the SQL prompt, it will produce the following result −

Procedure created.

Executing a Standalone Procedure

A standalone procedure can be called in two ways −

•Using the EXECUTE keyword
•Calling the name of the procedure from a PL/SQL block

The above procedure named 'greetings' can be called with the EXECUTE keyword as −

EXECUTE greetings;

The procedure can also be called from another PL/SQL block −

BEGIN

greetings;

END; /

Deleting a Standalone Procedure

A standalone procedure is deleted with the DROP PROCEDURE statement.

Syntax for deleting a procedure is −

DROP PROCEDURE procedure-name;

You can drop the greetings procedure by using the following statement −

DROP PROCEDURE greetings;

S.No Parameter Mode & Description

1

IN

An IN parameter lets you pass a value to the subprogram. It is a read-only parameter. Inside the subprogram, an IN

parameter acts like a constant. It cannot be assigned a value. You can pass a constant, literal, initialized variable, or

expression as an IN parameter. You can also initialize it to a default value; however, in that case, it is omitted from the

subprogram call. It is the default mode of parameter passing. Parameters are passed by reference.

2

OUT

An OUT parameter returns a value to the calling program. Inside the subprogram, an OUT parameter acts like a variable.

You can change its value and reference the value after assigning it. The actual parameter must be variable and it is

passed by value.

3

IN OUT

An IN OUT parameter passes an initial value to a subprogram and returns an updated value to the caller. It can be assigned

a value and the value can be read.

The actual parameter corresponding to an IN OUT formal parameter must be a variable, not a constant or an expression.

Formal parameter must be assigned a value. Actual parameter is passed by value.

Parameter Modes in PL/SQL Subprograms

This program finds the minimum of two values. Here, the procedure takes two numbers using the IN mode
and returns their minimum using the OUT parameters.

DECLARE

a number;

b number;

c number;

PROCEDURE findMin(x IN number, y IN number, z OUT number) IS

BEGIN

IF x < y THEN

z:= x;

ELSE

z:= y;

END IF;

END;

BEGIN

a:= 23;

b:= 45;

findMin(a, b, c);

dbms_output.put_line(' Minimum of (23, 45) : ' || c);

END; /

This procedure computes the square of value of a passed value. This example shows how we can use the same parameter to accept a value
and then return another result.

DECLARE

a number;

PROCEDURE squareNum(x IN OUT number) IS

BEGIN

x := x * x;

END;

BEGIN

a:= 23;

squareNum(a);

dbms_output.put_line(' Square of (23): ' || a);

END; /

Creating a Function

A standalone function is created using the CREATE FUNCTION statement. The
simplified syntax for the CREATE OR REPLACE PROCEDURE statement is as follows −

CREATE [OR REPLACE] FUNCTION function_name

[(parameter_name [IN | OUT | IN OUT] type [, ...])]

RETURN return_datatype

{IS | AS}

BEGIN < function_body >

END [function_name];

Where,

•function-name specifies the name of the function.

•[OR REPLACE] option allows the modification of an existing

function.

•The optional parameter list contains name, mode and types of

the parameters. IN represents the value that will be passed from

outside and OUT represents the parameter that will be used to

return a value outside of the procedure.

•The function must contain a return statement.

•The RETURN clause specifies the data type you are going to

return from the function.

•function-body contains the executable part.

•The AS keyword is used instead of the IS keyword for creating a

standalone function.

The following example illustrates how to create and call a standalone function. This function returns
the total number of CUSTOMERS in the customers table.
We will use the CUSTOMERS table.

CREATE OR REPLACE FUNCTION totalCustomers

RETURN number IS

total number(2) := 0;

BEGIN

SELECT count(*) into total FROM customers;

RETURN total;

END;

/

When the above code is executed using the SQL prompt, it will
produce the following result −

Function created.

While creating a function, you give a definition of what the function has to do. To use a function, you will
have to call that function to perform the defined task. When a program calls a function, the program
control is transferred to the called function.

A called function performs the defined task and when its return statement is executed or when the last
end statement is reached, it returns the program control back to the main program.

To call a function, you simply need to pass the required parameters along with the function name and if the
function returns a value, then you can store the returned value. Following program calls the
function totalCustomers from an anonymous block −

Calling a Function

DECLARE
c number(2);
BEGIN

c := totalCustomers();
dbms_output.put_line('Total no. of Customers: ' || c);

END;
/

When the above code is executed at the SQL prompt, it produces the
following result −

Total no. of Customers: 6 PL/SQL procedure successfully completed.

The following example demonstrates Declaring, Defining, and Invoking a Simple PL/SQL Function that computes and returns the maximum of two values.

DECLARE

a number;

b number;

c number;

FUNCTION findMax(x IN number, y IN number)

RETURN number

IS

z number;

BEGIN

IF x > y THEN

z:= x;

ELSE

z:= y;

END IF;

RETURN z;

END;

BEGIN

a:= 23;

b:= 45;

c := findMax(a, b);

dbms_output.put_line(' Maximum of (23,45): ' || c);

END;

/

When the above code is executed at the SQL prompt, it produces the following result −

Maximum of (23,45): 45 PL/SQL procedure successfully completed.

A cursor is a pointer to this context area. PL/SQL controls the context
area through a cursor. A cursor holds the rows (one or more) returned by
a SQL statement. The set of rows the cursor holds is referred to as
the active set.

You can name a cursor so that it could be referred to in a program to fetch
and process the rows returned by the SQL statement, one at a time.

There are two types of cursors −

•Implicit cursors

•Explicit cursors

CURSORS

Implicit Cursors:

Implicit cursors are automatically created by Oracle whenever an SQL
statement is executed, when there is no explicit cursor for the statement.
Programmers cannot control the implicit cursors and the information in it.

Whenever a DML statement (INSERT, UPDATE and DELETE) is issued, an
implicit cursor is associated with this statement. For INSERT operations, the
cursor holds the data that needs to be inserted. For UPDATE and DELETE
operations, the cursor identifies the rows that would be affected.

In PL/SQL, you can refer to the most recent implicit cursor as the SQL cursor,
which always has attributes such as %FOUND, %ISOPEN, %NOTFOUND,
and %ROWCOUNT.

The SQL cursor has additional
attributes, %BULK_ROWCOUNT and %BULK_EXCEPTIONS, designed for use
with the FORALL statement. The following table provides the description of the
most used attributes −

S.No Attribute & Description

1

%FOUND

Returns TRUE if an INSERT, UPDATE, or DELETE statement affected one or

more rows or a SELECT INTO statement returned one or more rows.

Otherwise, it returns FALSE.

2

%NOTFOUND

The logical opposite of %FOUND. It returns TRUE if an INSERT, UPDATE, or

DELETE statement affected no rows, or a SELECT INTO statement returned

no rows. Otherwise, it returns FALSE.

3

%ISOPEN

Always returns FALSE for implicit cursors, because Oracle closes the SQL

cursor automatically after executing its associated SQL statement.

4

%ROWCOUNT

Returns the number of rows affected by an INSERT, UPDATE, or DELETE

statement, or returned by a SELECT INTO statement.

Any SQL cursor attribute will be accessed as sql%attribute_name as shown
below in the example.

We will be using the CUSTOMERS table :

Select * from customers;

+----+----------+-----+-----------+----------+

|ID | NAME | AGE | ADDRESS | SALARY |

| 1 | Ramesh | 32 | Ahmedabad | 2000.00 |

| 2 | Khilan | 25 | Delhi | 1500.00 |

| 3 | kaushik | 23 | Kota | 2000.00 |

| 4 | Chaitali | 25 | Mumbai | 6500.00 |

| 5 | Hardik | 27 | Bhopal | 8500.00 |

| 6 | Komal | 22 | MP | 4500.00 |

+----+----------+-----+-----------+----------+

DECLARE

total_rows number(2);

BEGIN

UPDATE customers

SET salary = salary + 500;

IF sql%notfound THEN

dbms_output.put_line('no customers selected');

ELSIF sql%found THEN

total_rows := sql%rowcount;

dbms_output.put_line(total_rows || ' customers selected ');

END IF;

END;

/

The following program will update the table and increase the salary of each
customer by 500 and use the SQL%ROWCOUNT attribute to determine the
number of rows affected −

When the above code is executed at the SQL prompt, it produces the following result −

6 customers selected PL/SQL procedure successfully completed.

If you check the records in customers table, you will find that the rows have been

updated −

Explicit Cursors

Explicit cursors are programmer-defined cursors for gaining more control over
the context area. An explicit cursor should be defined in the declaration section
of the PL/SQL Block. It is created on a SELECT Statement which returns more
than one row.

The syntax for creating an explicit cursor is −

CURSOR cursor_name IS select_statement;

Working with an explicit cursor includes the following steps −

•Declaring the cursor for initializing the memory
•Opening the cursor for allocating the memory
•Fetching the cursor for retrieving the data
•Closing the cursor to release the allocated memory

Declaring the Cursor

Declaring the cursor defines the cursor with a name and the associated SELECT statement.

For example −

CURSOR c_customers IS SELECT id, name, address FROM customers;

Opening the Cursor

Opening the cursor allocates the memory for the cursor and makes it ready for
fetching the rows returned by the SQL statement into it. For example, we will
open the above defined cursor as follows −

OPEN c_customers;

Fetching the Cursor

Fetching the cursor involves accessing one row at a time. For example, we will

fetch rows from the above-opened cursor as follows −

FETCH c_customers INTO c_id, c_name, c_addr;

Closing the Cursor

Closing the cursor means releasing the allocated memory. For example, we will close the

above-opened cursor as follows −

CLOSE c_customers;

Example

Following is a complete example to illustrate the concepts of explicit cursors

DECLARE

c_id customers.id%type;

c_name customers.name%type;

c_addr customers.address%type;

CURSOR c_customers is

SELECT id, name, address FROM customers;

BEGIN

OPEN c_customers;

LOOP

FETCH c_customers into c_id, c_name, c_addr;

EXIT WHEN c_customers%notfound;

dbms_output.put_line(c_id || ' ' || c_name || ' ' || c_addr);

END LOOP;

CLOSE c_customers;

END;

/

When the above code is executed at the SQL prompt, it produces the following
result −

1 Ramesh Ahmedabad

2 Khilan Delhi

3 kaushik Kota

4 Chaitali Mumbai

5 Hardik Bhopal

6 Komal MP

PL/SQL procedure successfully completed.

TRIGGERS

Triggers are stored programs, which are automatically executed or fired when some events
occur. Triggers are, in fact, written to be executed in response to any of the following events

•A database manipulation (DML) statement (DELETE, INSERT, or UPDATE)
•A database definition (DDL) statement (CREATE, ALTER, or DROP).
•A database operation (SERVERERROR, LOGON, LOGOFF, STARTUP, or SHUTDOWN).

Triggers can be defined on the table, view, schema, or database with which the event is
associated.

Benefits of Triggers

Triggers can be written for the following purposes −

• Generating some derived column values automatically
• Enforcing referential integrity
• Event logging and storing information on table access
• Auditing
• Synchronous replication of tables
• Imposing security authorizations
• Preventing invalid transactions

Creating Triggers

The syntax for creating a trigger is −

CREATE [OR REPLACE] TRIGGER trigger_name

{BEFORE | AFTER | INSTEAD OF }

{INSERT [OR] | UPDATE [OR] | DELETE}

[OF col_name]

ON table_name [REFERENCING OLD AS o NEW AS n]

[FOR EACH ROW]

WHEN (condition)

DECLARE

Declaration-statements

BEGIN

Executable-statements

EXCEPTION

Exception-handling-statements

END;

Where,
•CREATE [OR REPLACE] TRIGGER trigger_name −
Creates or replaces an existing trigger with
the trigger_name.
•{BEFORE | AFTER | INSTEAD OF} − This specifies
when the trigger will be executed. The INSTEAD OF
clause is used for creating trigger on a view.
•{INSERT [OR] | UPDATE [OR] | DELETE} − This
specifies the DML operation.
•[OF col_name] − This specifies the column name that
will be updated.
•[ON table_name] − This specifies the name of the
table associated with the trigger.
•[REFERENCING OLD AS o NEW AS n] − This allows
you to refer new and old values for various DML
statements, such as INSERT, UPDATE, and DELETE.
•[FOR EACH ROW] − This specifies a row-level trigger,
i.e., the trigger will be executed for each row being
affected. Otherwise the trigger will execute just once
when the SQL statement is executed, which is called a
table level trigger.
•WHEN (condition) − This provides a condition for rows
for which the trigger would fire. This clause is valid
only for row-level triggers.

Example
To start with, we will be using the CUSTOMERS table we had created and used in
the previous chapters −

Select * from customers;

+----+----------+-----+-----------+----------+

| ID | NAME | AGE | ADDRESS | SALARY |

+----+----------+-----+-----------+----------+

| 1 | Ramesh | 32 | Ahmedabad | 2000.00 |

| 2 | Khilan | 25 | Delhi | 1500.00 |

| 3 | kaushik | 23 | Kota | 2000.00 |

| 4 | Chaitali | 25 | Mumbai | 6500.00 |

| 5 | Hardik | 27 | Bhopal | 8500.00 |

| 6 | Komal | 22 | MP | 4500.00 |

+----+----------+-----+-----------+----------+

The following program creates a row-level trigger for the customers table that would fire
for INSERT or UPDATE or DELETE operations performed on the CUSTOMERS table. This
trigger will display the salary difference between the old values and new values −

CREATE OR REPLACE TRIGGER display_salary_changes

BEFORE DELETE OR INSERT OR UPDATE ON customers

FOR EACH ROW

WHEN (NEW.ID > 0)

DECLARE

sal_diff number;

BEGIN

sal_diff := :NEW.salary - :OLD.salary;

dbms_output.put_line('Old salary: ' || :OLD.salary);

dbms_output.put_line('New salary: ' || :NEW.salary);

dbms_output.put_line('Salary difference: ' || sal_diff);

END; /

When the above code is executed at the SQL prompt, it produces the
following result −

Trigger created.

The following points need to be considered here −
•OLD and NEW references are not available for table-level triggers, rather you
can use them for record-level triggers.

•If you want to query the table in the same trigger, then you should use the
AFTER keyword, because triggers can query the table or change it again only
after the initial changes are applied and the table is back in a consistent state.

•The above trigger has been written in such a way that it will fire before any
DELETE or INSERT or UPDATE operation on the table, but you can write your
trigger on a single or multiple operations, for example BEFORE DELETE, which
will fire whenever a record will be deleted using the DELETE operation on the
table.

Triggering a Trigger

Let us perform some DML operations on the CUSTOMERS table. Here is one
INSERT statement, which will create a new record in the table −

INSERT INTO CUSTOMERS (ID,NAME,AGE,ADDRESS,SALARY) VALUES (7, 'Kriti', 22, 'HP', 7500.00);

When a record is created in the CUSTOMERS table, the above create
trigger, display_salary_changes will be fired and it will display the
following result −

Old salary:

New salary: 7500

Salary difference:

Because this is a new record, old salary is not available and the above result
comes as null. Let us now perform one more DML operation on the CUSTOMERS
table. The UPDATE statement will update an existing record in the table −

UPDATE customers SET salary = salary + 500 WHERE id = 2;

When a record is updated in the CUSTOMERS table, the above create
trigger, display_salary_changes will be fired and it will display the following result −

Old salary: 1500

New salary: 2000

Salary difference: 500

Type of Triggers

1. BEFORE Trigger : BEFORE trigger execute before the triggering DML statement (INSERT, UPDATE, DELETE) execute.

Triggering SQL statement is may or may not execute, depending on the BEFORE trigger conditions block.

2. AFTER Trigger : AFTER trigger execute after the triggering DML statement (INSERT, UPDATE, DELETE) executed.

Triggering SQL statement is execute as soon as followed by the code of trigger before performing Database operation.

3. ROW Trigger : ROW trigger fire for each and every record which are performing INSERT, UPDATE, DELETE from the

database table. If row deleting is define as trigger event, when trigger file, deletes the five rows each times from the table.

4. Statement Trigger : Statement trigger fire only once for each statement. If row deleting is define as trigger event, when

trigger file, deletes the five rows at once from the table.

5. Combination Trigger : Combination trigger are combination of two trigger type,

1. Before Statement Trigger : Trigger fire only once for each statement before the triggering DML statement.

2. Before Row Trigger : Trigger fire for each and every record before the triggering DML statement.

3. After Statement Trigger : Trigger fire only once for each statement after the triggering DML statement executing.

4. After Row Trigger : Trigger fire for each and every record after the triggering DML statement executing.

Inserting Trigger

This trigger execute BEFORE to convert ename field lowercase to uppercase.

CREATE or REPLACE TRIGGER trg1
BEFORE
INSERT ON emp1 FOR EACH ROW
BEGIN
:new.ename := upper(:new.ename);
END;
/

Restriction to Deleting Trigger

This trigger is preventing to deleting row.

Delete Trigger Code:

CREATE or REPLACE TRIGGER trg1
AFTER
DELETE ON emp1
FOR EACH ROW
BEGIN
IF :old.eno = 1 THEN
raise_application_error(-20015, 'You can't delete this row');
END IF;
END;
/

Concept Of Error Handling

An error condition during a program execution is called an exception in PL/SQL. PL/SQL supports

programmers to catch such conditions using EXCEPTION block in the program and an appropriate action

is taken against the error condition.

What is Exception Handling?

PL/SQL provides a feature to handle the Exceptions which occur in a PL/SQL Block known as exception

Handling. Using Exception Handling we can test the code and avoid it from exiting abruptly. When an

exception occurs a messages which explains its cause is recieved

.

PL/SQL Exception message consists of three parts.

1) Type of Exception

2) An Error Code

3) A message

By Handling the exceptions we can ensure a PL/SQL block does not exit abruptly.

Syntax for Exception Handling The General Syntax for exception handling is as

follows.

Here you can list down as many as exceptions you want to handle.

The default exception will be handled using WHEN others THEN:

DECLARE

<declaration section>

BEGIN

<executable command(s)>

EXCEPTION

<Exception handling goes here>

WHEN exception1 THEN

exception1-handling-statements

WHEN exception2 THEN

exception2-handling-statements

WHEN exception3 THEN

exception3-handling-statements

........

WHEN others THEN

exception3-handling-statements

END;

Example Let us write some simple code to illustrate the concept. We will be using the

CUSTOMERS table:

DECLARE

c_id customers.id%type := 8;

c_name customers.name%type;

c_addr customers.address%type;

BEGIN

SELECT name, address INTO c_name, c_addr

FROM customers

WHERE id = c_id;

DBMS_OUTPUT.PUT_LINE ('Name: '|| c_name);

DBMS_OUTPUT.PUT_LINE ('Address: ' || c_addr);

EXCEPTION

WHEN no_data_found THEN

dbms_output.put_line('No such customer!');

WHEN others THEN

dbms_output.put_line('Error!');

END; /

When the above code is executed at SQL prompt, it produces the following result:

No such customer!

PL/SQL procedure successfully completed.

The above program displays the name and address of a customer whose ID is given.

Since there is no customer with ID value 8 in our database, the program raises the run-

time exception NO_DATA_FOUND, which is captured in EXCEPTION block.

Raising Exceptions

Exceptions are raised by the database server automatically whenever there is any

internal database error, but exceptions can be raised explicitly by the programmer by

using the command RAISE. Following is the simple syntax of raising an exception:

Following is the simple syntax of raising an exception:

DECLARE

exception_name EXCEPTION;

BEGIN

IF condition THEN

RAISE exception_name;

END IF;

EXCEPTION

WHEN exception_name THEN

statement;

END;

You can use above syntax in raising Oracle standard exception or any user-defined exception. Next

section will give you an example on raising user-defined exception, similar way you can raise Oracle

standard exceptions as well.

User-defined Exceptions

PL/SQL allows you to define your own exceptions according to the need of your program. A userdefined

exception must be declared and then raised explicitly, using either a RAISE statement or the procedure

DBMS_STANDARD.RAISE_APPLICATION_ERROR.

The syntax for declaring an exception is:

DECLARE

my-exception EXCEPTION;

Example:

The following example illustrates the concept. This program asks for a customer ID, when the user

enters an invalid ID, the exception invalid_id is raised.

DECLARE

c_id customers.id%type := &cc_id;

c_name customers.name%type;

c_addr customers.address%type;

-- user defined exception

ex_invalid_id EXCEPTION;

BEGIN

IF c_id <= 0 THEN

RAISE ex_invalid_id;

ELSE

SELECT name, address INTO c_name, c_addr FROM customers WHERE id = c_id;

DBMS_OUTPUT.PUT_LINE ('Name: '|| c_name);

DBMS_OUTPUT.PUT_LINE ('Address: ' || c_addr);

END IF;

EXCEPTION

WHEN ex_invalid_id THEN

dbms_output.put_line('ID must be greater than zero!'); WHEN no_data_found THEN

dbms_output.put_line('No such customer!');

WHEN others THEN

dbms_output.put_line('Error!');

END;

/

When the above code is executed at SQL prompt, it produces the following result:

Enter value for cc_id: -6 (let's enter a value -6)

old 2: c_id customers.id%type := &cc_id;

new 2: c_id customers.id%type := -6;

ID must be greater than zero!

PL/SQL procedure successfully completed

For any queries email at: romanariyazuok@gmail.com

