THEORY OF COMPUTATIO

TimeComplexity

Dr. Faheem Masoodi
masoodifahim@ok.edu.in

Disclaimer.
This Study material has been compifaarelyfor Academic purposes without any claim of copyright or ownership to
the contents of this document.

Rates of Growth

Definition. Let f, g be functions from N to N. Then, we say that
f(n) = O(g(n)) if there are numbers ¢ and n, such that f(n) < cg(n) for
all n > n,. If these conditions do not hold we say that f(n) # O(g(n)).

If f(n) = O0(g(n)) and g(n) = O(f(n)) we say that f and g have the
same rate of growth. On the other hand, if f(n) = O(g(n)) but g(n) #
O(f(n)), we say that g(n) grows faster than f(n).

An example should help clarify these notions. We have

n* = 0(3n* — 6n + 5)
since

n? 1 1

I —6n+5 3—6/n+5/m 3

as n — o, and therefore there is a number n, such that for all n > n,,

ni

< 1.
3n2 —6n + 5

Likewise 3n% — 6n + 5 = O(n?), so that these two functions have the
same rate of growth.
Clearly, it is also true that 3n* — 6n + 5 = O(n*); however,

n®* + 03n* — 6n + 5)
because
n’ 1

3n* —6n+5 =n.3—6/n+5/n2_}

as n — . Thus, we can say that n® grows faster than 3n* — 6n + 5.
More generally, we can prove

A polynomial is a function p from N to N that is defined by a formula
of the form

p(n) =a, +an +a,n*+ - +a,n’, (1.4)

where a,,a,,...,a,_, are integers, positive, negative, or zero, while a, is a
positive integer. In this case the number r is called the degree of the
polynomial p. The degree of a polynomial determines its rate of growth in
the following precise sense.

Theorem 1.2. Let p be a polynomial of degree r. Then p and n" have the
same rate of growth. Moreover, p grows faster than »™ if m <r, and n™
grows faster than p if m > r.

Proof. Letting p be as in (1.4), we have

p(n) 4 a,

nr nr nr—]
as n — o, Also,
p(n) p(n) B
m = ¥ "n *
n n
so that
(n) (n)
pm — 00 if r>m, and pm -0 if r<m.
n n
The result then follows from Theorem 1.1. []

Next we shall see that exponential functions grow faster than any fixed
power.

Theorem 1.3. The function k", with k > 1, grows faster than any polyno-
mial.

Proof. 1t clearly suffices to prove that for any r € N,

kﬂ

lim — = e,

n—o N
One way to obtain this result is to use L’Hospital’s rule from calculus; on
differentiating the numerator and denominator of this fraction r times, a
fraction is obtained whose numerator approaches infinity and whose de-
nominator is a constant (in fact, r!). To obtain the result directly, we first
prove the following lemma.

2. P versus NP

Computability theory has enabled us to distinguish clearly and precisely
between problems for which there are algorithms and those for which

there are none. However, there is a great deal of difference between
solvability “in principle,” with which computability theory deals, and solv-
ability “in practice,” which is a matter of obtaining an algorithm that can
be implemented to run using space and time resources likely to be
available. It has become customary to speak of problems that are solvable,
not only in principle but also in practice, as fractable; problems that may
be solvable in principle but are not solvable in practice are then called
intractable.

The satisfiability problem, discussed in Chapter 12, is an example that is
illuminating in this connection and will, in fact, play a central role in this
chapter. The satisfiability problem is certainly solvable; in Chapter 12, we
discussed algorithms for testing a given formula in CNF for satisfiability
based on truth tables, on converting to DNF, on resolution, and on the
Davis—Putnam rules. However, we cannot claim that the satisfiability
problem is tractable on the basis of any of these algorithms or, for that
matter, on the basis of any known algorithm. As we have seen, procedures
based on truth tables or DNF require a number of steps which is an
exponential function of the length of the expression representing a given
formula in CNF. It is because of the rapid growth of the exponential
function that these procedures can quickly exhaust available resources.
Procedures based on resolution or on the Davis—Putnam rules can be
designed that work well on “typical” formulas. However, no one has
succeeded in designing such a procedure for which it can be proved that
exponential behavior never arises, and it is widely believed (for reasons
that will be indicated later) that every possible procedure for the satisfia-
bility problem behaves exponentially in some cases. Thus the satisfiability
problem is regarded as a prime candidate for intractability, although the
matter remains far from being settled.

This association of intractability with the exponential function, coupled
with the fact (Theorem 1.3) that an exponential function grows faster than
any polynomial function, suggests that a problem be regarded as tractable
if there is an algorithm that solves it which requires a number of steps
bounded by some polynomial in the length of the input.

Definition. A language L on an alphabet A is said to be polynomial—time
decidable if there is a Turing machine .# that accepts L, and a polynomial
pln), such that the number of steps in an accepting computation by .#
with input x is =< p(|x[). When the alphabet is understood, we write P for
the class of polynomial-time decidable languages.

Definition. A total function f on 4%, where .4 is an alphabet, is said to
be polynomial-time computable if there is a Turing machine .# that
computes f, and a polynomial p(n), such that the number of steps in the
computation by .# with input x is =< p(|x|).

With respect to both of these definitions, we note

1. It suffices that there exist a polynomial p(n) such that the number of
steps in the computation by .# with input x is < p(lx|) for all but a
finite number of input strings x. For, in such a case, to include the finite
number of omitted cases as well, we let ¢ be the largest number of
steps used by .# in these cases, and replace p(n) by the polynomial
pln) + c.

2. Using 1 and Theorem 1.2, it suffices that the number of steps be
O(|x|") for some r € N.

The discussion leading to these definitions suggests that in analogy with
Church’s thesis, we consider the

Cook—Karp Thesis. The problem of determining membership of strings
in a given language L is tractable if and only if L. = P.

The evidence supporting the Cook—Karp thesis 15 much weaker than
that supporting Church’s thesis. Nevertheless, it has gained wide accep-
tance. Later, we shall discuss some of the reasons for this.

The following simple result is quite important.

Theorem 2.1. Let . = P, let f be a polynomial-time computable func-
tion on A4*, and let Q = {x € A*| f(x) € L}. Then Q € P.

Proof. Let .# accept L using a number of steps which is O(|x|"), and let
A4 compute f(x) in a number of steps which is O(|x|"). A Turing machine
S that accepts Q is easily constructed that, in effect, first runs .4 on x to
compute f(x) and then runs .# on f(x) to determine whether f(x) € L.
Since a Turing machine cannot print more symbols in the course of a
computation then there are steps in that computation, we have

LfCx) < |xl + p(lx]), where p(n) = O(n*).

By Theorem 1.2, it follows that |f(x) = O(|x|"). Hence, the number of
steps required by # on input x is O(|x|*"). =

Definition. A language L is said to belong to the class NP if there is a
nondeterministic Turing machine .# that accepts L, and a polynomial
p(n), such that for each x € L, there is an accepting computation
YisYas-oes Y DY & for x with m < p(|x]|).

We then have readily

Theorem 2.3. P < NP. If . € NP, then L is recursive.

Proof. The first inclusion is obvious, since an ordinary Turing machine is
a nondeterministic Turing machine.

For the rest, let L € NP, let .# be a nondeterministic Turing machine
which accepts L, with corresponding polynomial p(n). We set v, to be the
configuration

Sy X

T
qy

Next, by examining the quadruples of .#, we find all configurations v,
such that y, ~ y,. Continuing in this manner, we determine all possible
SEQUENCES ¥, ¥a+--.» ¥, With m < p(|x[) such that

YiEYabE o Y

Then, x € L if and only if at least one of these sequences is an accepting
computation by .# for x. This gives an algorithm for determining whether
x € L, and so, invoking Church’s thesis, we conclude that L is recursive.

It is natural to ask whether the inclusion P C NP is proper, i.e., whether
there is a language L such that L € NP — P. As we shall see, using the
notion of NP-completeness to be defined below, it can be shown that if
there were such a language, then it would follow that SAT € NP - P.
Unfortunately, this remains an open question.

Definition.' Let L, Q be languages. Then we write
Qs=, L,

and say that Q is polynomial-time reducible to L, if there is a
polynomial—-time computable function f such that

xe@ e f(x)el.

Theorem 2.5. let R <, Qand Q <, L. Then R <, L.
Proof. This follows at once from Theorem 2.2. |

Definition. A language L is called NP-hard if for every Q € NP, we have
Q =, L. L is called NP-complete if L = NP and L is NP-hard.

The significance of NP-completeness can be appreciated from the fol-
lowing result.

Theorem 2.6. If there is an NP-complete language L such that L € P,
then NP = P.

Proof. We need to show that if Q = NP, then Q = P. Let Q € A*. Since
L is NP-hard, there is a polynomial-time computable function f such that

Q={xeA*| f(x) e lL}.
The result now follows from Theorem 2.1. |

Intuitively, one can thus think of the NP-complete languages as the
“hardest” languages in NP. As we shall see in the next section, SAT is
NP-complete. Thus, if it should turn out that SAT € P, then every NP-
complete problem would also be in P. It is considerations like these that
have led to the tentative conclusion that NP-complete problems should be
regarded as being intractable. To date, however, although very many
problems are known to be NP-complete, there is no language known to be
in NP — P, and it thus remains possible that NP = P.

