Introduction to Compiler

Why Use a compiler?

* All computers only understand machine language

100000 100 1011010010010

* Therelore, high-level language instructions must be (mnslaled into
machine language prior 10 execution

Compiler

* A compiler 1s a large program that can read a program in one language the sowne
lenguage - and transiate it into an equivalent progmm in another language - the targe!

lang uage;
* An important role of the compiler is to report any emrors in the source program that it
detects during the ranslation process

v [o

* Il the target program is an executable machine-language program, it can then be called
by the user 1o process inputs and produce outputs.

_ —

Source Code Target Code

Interpreter

An imterpreter is mother common kind of lnguage Fnu‘::.mr- Instend of ;l‘nlm;ltr a Imﬁ:
program as a tmnslshon. an interpreler appears 10 directly execule the operations specified in
sowce program or ieputs supphicd by the user

The machine-language targa rm;nm produced by a compiler is wuully much faster than
imerpreler ol mapping inputs (o outpuls . An inlerpreter, however, can usually give better ermw
diagnostics than a compaler, because ® execuies the source program statemem by staternent,

Working Process of Compilers Vs Interpreter

Compilation Process:

Interpretive Process: =

e CD

Compiler Takes Entlire program as input _l:lﬂptﬂﬂ'lhkﬂ!l.&hﬂmﬁmn

Inermedimte Object Code is Generated No Intermediate Object Cade is
Generated

Conditional Control Statements are Conditional Control Stalements we

Excoutes faster Execuies siower

Memeary Requirement © Marei Since Memory Requirement is Less

Object Code s Generated)

Program need not be compiled every time E ume higher level program i
mm:m lower h'd'ﬂFl."l'll:'l

Errors sic displayed aficr entire Errers are displayed for every
program is checked instruction interpreted (if any)

——

Programmng linguage like C. C++ use Progmmming language like Python.
‘compilers. Ruby use interpreters. 4

]

Context of a Compiler

* The programs which assist the compiler 1o
convert a skeletal source code ino executable
form make the context of a compiler and 15 as
follows:

* Preprocessor:

The preprocessor scans the source code and
includes the header files which

contan relevamt nformanon for varous
functions.

* Compiber:

The compiler passes the source code through
vanous phases and generates the
target assembly code.

Cont....

* Assembler:

The assembler converts the assembly onde inio relocalable machme code or object
code. Although thas code 15 in 0 and | form, but it cannot be executed because this
code has not been assigned the actual memory addresses.

* LoaderLink Editor:

It performs two functions. The process of loading consists of laking machine code,
alenng the relocatable addresses and placing the aliered imstructions and daia n
memory ot proper location

The link edaor makes a sngle program from severul files of relocatable mechme
code. These files are library files which the program needs

The loader/hnk ednor produces the executable or absolule machime code,

Phases of Compiler Design

A compiler operates in phases. A phase is a logically interrelated operation
that takes source program in one representation and produces output in
another representation. The phases of a compiler are shown in below

There are two phases of compilation.
Analysis (Machine Independent/Language Dependent)
Synthesis Machine Dependent/Language independent)

Compilation process is partitioned into no-of-sub processes called *phases’.

Phase-1: Lexical Analysis

* Lexical analyzer reads the stream of characters making up the source
program and groups the characters into meaningful sequences called

lexeme
* For each lexeme, the lexical analyzer produces a token of the form that it

passes on to the subsequent phase, synlax analysis
(token-name, attribute-value)
* Token-name: an abstract symbol i1s used during syntax analysis.
* attribute-value: points to an entry in the symbol table for this wken.

Example:

newval := oldval + 12 « Tokens:

newval Identifier

= Assignment operalor
oldval ldentifier
* Add operator

|2 Number
Lexical anal yzer runcates white spaces and also removes errors.

LEXICAL ANALYSIS:

SOurTe:
rocgr am Ex {owut Tut iy { commant
msgin writeln (" "hi"*) e .
Output ol scnnner:
1. Ident Af lex Program
- White saspace ¢«
A, Ident | fer Ex
4. White spaceo . ’
s. Punctuat ion {
. Ident if ierx oAUt jut
7 Punctwuat { on ¥
H. Punctuat ion i
w. Whice space «if B
10, Commant { comment
11. Idencifierx begin
12. White space ¢ @
13, Identifier writceln
I 4 Whicte space F o
15, Punctuat ion i
L. Scring *Ihi*
17. FPunctuat Lon]
18 Whicte = - ' .
143, ldent Ifiex el
=1, Punctuat fLon

Phase-2: Syntax Analysis

* Alsocalled Parsing or Tokenizing.

* The parser uses the first components of the tokens produced by the lexical
analyzer 10 creale a tree-like intermediate representation that depicis the
grammatic al structure of the token stream.

* A typical representation is a syntax tree in which each interior node
represents an operation and the children of the node represent the
arguments of the operation

| L% - 5 P
ﬁ—r"‘r‘r-'%‘\"""-.
el Ficr ; X I RSO

R
| R
B v a! CAPTGRRILN

uin]li'h'l

olds ni

-u.'t*l-n. ATES 5|

FIT AA1ATS

Phase-3: Semantic Analysis

* The semantic analvzer uses the syniax tree and the information in the
symbol table 10 check the source program for semantic consistency wilh
the language defininon.

information and saves it in either the synitax tree or the

* Gathers t”: s 1t _ .
symbol tuble, for subsequent use during intermediate-code generation.

An important part of semantic analysis is type checking., where the
compiler checks that each operator has matching operands.

For example, many programming language definitions require an array
index to be an integer; the compiler must report an error if a floating-pomt
number is used to index an armay.

* Example: newval := oldval+12

The type of the identificr newval must match with the type of expression (oddval+ 1.2}

Example:

* Semantic analysis

* Syntacucally correct, but semantically incorrect

example
sum= a+ b;

TS

double sum data rvpe misimaich
char b,

Phase-4: Intermediate Code Generation

After syntax and semantic analysis of the source program, many compilers
encrate an explicit low-level or machine-like inlermediale representation
a program for an abstract machine). This inlermediate representation
should have two impornant properties:
* it should be easy o produce and
* il should be easy w translate into the target machine.

The considered imtermediate form called three-address code, which consists
of a sequence of assembly-like instructions with three operands per
instruction. Each operand can act like a register.

This phase bnidges the analysis and synthesis phases of translation

Example:

newval := oldval + fact * 1

l

Id1 := Id1| +d3*1

L]

Temp1 = into real (1)

Temp2 - idi3 * Temp1
Temp3 = id2 Temp2
Id1 - Templ

Phase-5: Code Optimization

* The compiler looks at large segments of the program to decide how 1o
improve p¢rormance

* The machine-independent code-optimization phase attempts to improve the
intermediale code so that better target code wﬁ?rﬁuh_

* Usually better means:
* faster, shorter code, or target code that consumes less power.

* There are simple optimizations that significantly improve the running time
of the target program without slowing down compilation 1o much.

* Optimization cannot make an inefficient algonthm efficient - “only makes
an eflicient algorthm more efficient™

= The above intermediate code will be optimized as:

Temp1 = id3 * 1
Id1 = id2 « Temp1

Phase-6: Code Generation

* The last phase of translation is code generation.

* Takes as mput an intermediate representation of the source program and
maps it inlo the target language

* I the target language is machine, code, registers or memory locations are
selected for each of the vanables used by the program.

* Then, the intermediate mstructions are translated inlo sequences of
machine instructions that perform the same task.

* A crucial aspect of code generation is the judicious assignment of registers
10 hold vanables.

Example:

Id1 :=Id2 + id3 * 1
MOV R1,ld3
MUL R1.,#1
MOV RZ,ld2
ADD R1,R2

MOV

id1,R1

Symbol-Table Management

* The symbol table is a dawa structure containing a record for each variable
name, with hields for the annbutes of the name.

* The data structure should be designed to allow the compiler to find the

record for each name quickly and 10 store or retrieve data from that record
guickly

* These atributes may provide information about the storage allocated for a
name, its type, its scope (where in the program its value may be used), and
in the case of procedure names, such things as the number and types of its

arguments, the method of passing each argument (for example, by value or
by reference), and the type returned. = e 3 ;-

old val
fact

k2 & attribute
id] Battribute

Error Handling Routine:

* One of the most impontant functions of a compiler is the detection and
reporting of emrors in the source program. The ermor message should allow

the programmer to determine exactly where the errors have occurred.
Ermrors may occur in all or the phases of a compiler.
* Whenewver a phase of the compiler discovers an ermror, it must report the

error 1o the emor handler, which issues an appropnate diagnostic message,
Both of the uble-management and error-Handling routines interact with all

phases ol the compiler.

One pass compiler

* Une pass compiler passes through the source code of each compilation unit
only once.

* Their efliciency is limited because they don’t produce intermediate codes
which can be refined easily.

* Une pass compilers very common because of their simplicity.

* Check for semantic errors and generate code.

* They are faster then multi pass compilers.

* Also known as Narrow compiler.

* Pascal and C are both languages that allow one pass compilation.

Multi-pass compilers

* The nput i1s passed through certain phases in one pass. Then the output of
previous phases is passed through other phases in second pass and %0 on
until the desared output 1s generated.

* It requires less memory because each pass takes output of previous phase
as mput.

* [t may create one or more intermediate code.

* Also known as wide compiler.

* Modula-2 is a language whose structure requires that a compiler has at
least two passes

Front End vs Back End of a Compilers

The phases of a compiler are collected into front end and back end.

#The FRONT END consists of those phases that depend primarily on
the source progmam. These normally include Lexical and Syntacuc
analysis, Semantic analysis ,and the generation of intermediate code.

#A certain amount of code optimization can be done by front end as
well.

#1he BACK END includes the code optimization phase and final
code generation phase, along with the necessary error handling and
symbol table operations.

#lhe from end Analyzes the source program and produces
intermediate code while the back end Synthesizes the target program
from the intermediate code.

#The front end phase comsists of those phases that pnmarily depend on
source program and are independent of the target machine.

»Back end phase of compiler consists of those phases which depend on
target machine and are independent of the source program.

»Intermediate representation may be considered as middle end, as o
depends upon source code and target machine.

analvsis
:
g

Front end
Back end
svathesis

