
University of Kashmir Department of Computer Science

1

JAVA PROGRAMMING

COURSE NAME: MCA – 5
TH

 SEMESTER

COURSE CODE: MCA18501CR

 Teacher Incharge: Dr. Shifaa Basharat

 Contact: fazilishifaa@gmail.com

University of Kashmir Department of Computer Science

2

Inheritance:
Inheritance is an important pillar of OOP (Object Oriented Programming). It is the mechanism in

java by which one class is allowed to inherit the features (fields and methods) of another class.

Basic terminology:

Super Class: The class whose features are inherited is known as super class (or a base class or a

parent class).

Sub Class: The class that inherits the other class is known as sub class (or a derived class,

extended class, or child class). The subclass can add its own fields and methods in addition to the

superclass fields and methods.

Reusability: Inheritance supports the concept of “reusability”, i.e. when we want to create a new

class and there is already a class that includes some of the code that we want, we can derive our

new class from the existing class. By doing this, we are reusing the fields and methods of the

existing class.

How to use inheritance in Java

The keyword used for inheritance is extends.

Syntax:

class derived-class extends base-class

{

 //methods and fields

}

Types of Inheritance in Java

Below are the different types of inheritance which is supported by Java.

1. Single Inheritance: In single inheritance, subclasses inherit the features of one

superclass. In image below, the class A serves as a base class for the derived class B.

University of Kashmir Department of Computer Science

3

2. Multilevel Inheritance: In Multilevel Inheritance, a derived class will be inheriting a

base class and as well as the derived class also act as the base class to other class. In

below image, the class A serves as a base class for the derived class B, which in turn

serves as a base class for the derived class C. In Java, a class cannot directly access

the grandparent’s members.

3. Hierarchical Inheritance: In Hierarchical Inheritance, one class serves as a superclass

(base class) for more than one sub class.In below image, the class A serves as a base

class for the derived class B, C and D.

4. Multiple Inheritance (Through Interfaces): In Multiple inheritance, one class can

have more than one superclass and inherit features from all parent classes. However,

Java does not support multiple inheritance with classes. In java, we can achieve

multiple inheritance only through Interfaces. In image below, Class C is derived from

interface A and B.

https://www.geeksforgeeks.org/g-fact-91/
https://www.geeksforgeeks.org/java-and-multiple-inheritance/amp/
https://www.geeksforgeeks.org/java-and-multiple-inheritance/amp/
http://quiz.geeksforgeeks.org/interfaces-in-java/

University of Kashmir Department of Computer Science

4

5. Hybrid Inheritance (Through Interfaces): It is a mix of two or more of the above

types of inheritance. Since java doesn’t support multiple inheritance with classes, the

hybrid inheritance is also not possible with classes. Hence, we can achieve hybrid

inheritance only through interfaces.

Important facts about inheritance in Java

 Default superclass: Except Object class, which has no superclass, every class has one

and only one direct superclass (single inheritance). In the absence of any other explicit

superclass, every class is implicitly a subclass of Object class.

 Superclass can only be one: A superclass can have any number of subclasses. But a

subclass can have only one superclass. This is because Java does not support multiple

inheritance with classes. Although with interfaces, multiple inheritance is supported by

java.

 Inheriting Constructors: A subclass inherits all the members (fields, methods, and

nested classes) from its superclass. Constructors are not members, so they are not

inherited by subclasses, but the constructor of the superclass can be invoked from the

subclass.

http://quiz.geeksforgeeks.org/interfaces-in-java/

University of Kashmir Department of Computer Science

5

 Private member inheritance: A subclass does not inherit the private members of its

parent class. However, if the superclass has public or protected methods (like getters and

setters) for accessing its private fields, these can also be used by the subclass.

What all can be done in a Subclass?

 In sub-classes we can inherit members as is, replace them, hide them, or supplement them

with new members:

 The inherited fields can be used directly, just like any other fields.

 We can declare new fields in the subclass that are not in the superclass.

 The inherited methods can be used directly as they are.

 We can write a new instance method in the subclass that has the same signature as the

one in the superclass, thus overriding it.

 We can write a new static method in the subclass that has the same signature as the one in

the superclass, thus hiding it.

 We can declare new methods in the subclass that are not in the superclass.

 We can write a subclass constructor that invokes the constructor of the superclass, either

implicitly or by using the keyword super.

Role of Access Modifiers in inheritance:

Access modifiers in Java helps to restrict the scope of a class, constructor, variable, method or

data member. There are four types of access modifiers available in java:

1. Default – No keyword required

2. Private

3. Protected

4. Public

 Default: When no access modifier is specified for a class, method or data member, it is

said to be having the default access modifier by default. The data members, class or

methods which are not declared using any access modifiers i.e. having default access

modifier are accessible only within the same package.

University of Kashmir Department of Computer Science

6

 Private: The private access modifier is specified using the keyword private. The

methods or data members declared as private are accessible only within the class in

which they are declared. Any other class of same package will not be able to

access these members. Top level Classes or interface cannot be declared as private

because private means “only visible within the enclosing class”.

 protected: The protected access modifier is specified using the keyword protected. The

methods or data members declared as protected are accessible within same package or

sub classes in different package.

 public: The public access modifier is specified using the keyword public. The public

access modifier has the widest scope among all other access modifiers. Classes, methods

or data members which are declared as public are accessible from everywhere in the

program. There is no restriction on the scope of public data members.

University of Kashmir Department of Computer Science

7

1. Single Inheritance Example:

import java.util.*;

import java.lang.*;

import java.io.*;

public class Shape

{

 int length;

 int breadth;

}

/***/

public class Rectangle extends Shape

{

 int area;

 public void calcualteArea()

 {

 area = length*breadth;

 }

 public static void main(String args[])

 {

 Rectangle r = new Rectangle();

 //Assigning values to Shape class attributes

 r.length = 10;

 r.breadth = 20;

 //Calculate the area

 r.calcualteArea();

 System.out.println("The Area of rectangle of length \""

 +r.length+"\" and breadth \""+r.breadth+"\" is \""+r.area+"\"");

 }

}

//Output

The Area of rectangle of length "10" and breadth "20" is "200"

2. Multilevel Inheritance Example:

University of Kashmir Department of Computer Science

8

import java.util.*;

import java.lang.*;

import java.io.*;

class Person

{

 private String name;

 Person(String s)

 {

 setName(s);

 }

 public void setName(String s)

 {

 name = s;

 }

 public String getName()

 {

 return name;

 }

 public void display()

 {

 System.out.println("Name of Person = " + name);

 }

}

/**/

class Staff extends Person

{

 private int staffId;

 Staff(String name,int staffId)

 {

 super(name);

 setStaffId(staffId);

 }

 public int getStaffId() {

 return staffId;

 }

 public void setStaffId(int staffId) {

 this.staffId = staffId;

 }

 public void display()

 {

 super.display();

 System.out.println("Staff Id is = " + staffId);

 }

}

/**/

University of Kashmir Department of Computer Science

9

class TemporaryStaff extends Staff

{

 private int days;

 private int hoursWorked;

 TemporaryStaff(String sname,int id,int days,int hoursWorked)

 {

 super(sname,id);

 this.days = days;

 this.hoursWorked = hoursWorked;

 }

 public int Salary()

 {

 int salary = days * hoursWorked * 50;

 return salary;

 }

 public void display()

 {

 super.display();

 System.out.println("No. of Days = " + days);

 System.out.println("No. of Hours Worked = " + hoursWorked);

 System.out.println("Total Salary = " + Salary());

 }

}

/***/

public class MultilevelInheritanceExample

{

 public static void main(String args[])

 {

 TemporaryStaff ts = new TemporaryStaff("JavaInterviewPoint",999,10,8);

 ts.display();

 }

}

/***/

//Output

Name of Person = JavaInterviewPoint

Staff Id is = 999

No. of Days = 10

No. of Hours Worked = 8

Total Salary = 4000

University of Kashmir Department of Computer Science

10

3. Hierarchical Inheritance Example:

import java.util.*;

import java.lang.*;

import java.io.*;

public class ClassA

{

 public void dispA()

 {

 System.out.println("disp() method of ClassA");

 }

}

/**/

public class ClassB extends ClassA

{

 public void dispB()

 {

 System.out.println("disp() method of ClassB");

 }

}

/***/

public class ClassC extends ClassA

{

 public void dispC()

 {

 System.out.println("disp() method of ClassC");

 }

}

/**/

public class ClassD extends ClassA

{

 public void dispD()

 {

 System.out.println("disp() method of ClassD");

 }

}

/**/

University of Kashmir Department of Computer Science

11

/**/

public class HierarchicalInheritanceTest

{

 public static void main(String args[])

 {

 //Assigning ClassB object to ClassB reference

 ClassB b = new ClassB();

 //call dispB() method of ClassB

 b.dispB();

 //call dispA() method of ClassA

 b.dispA();

 //Assigning ClassC object to ClassC reference

 ClassC c = new ClassC();

 //call dispC() method of ClassC

 c.dispC();

 //call dispA() method of ClassA

 c.dispA();

 //Assigning ClassD object to ClassD reference

 ClassD d = new ClassD();

 //call dispD() method of ClassD

 d.dispD();

 //call dispA() method of ClassA

 d.dispA();

 }

}

/***/

//Output

disp() method of ClassB

disp() method of ClassA

disp() method of ClassC

disp() method of ClassA

disp() method of ClassD

disp() method of ClassA

University of Kashmir Department of Computer Science

12

4. Default Access Modifier Example:

//Java program to illustrate default modifier

package p1;

//Class defaultdemo1 is having Default access modifier

class defaultdemo1

{

 void display()

 {

 System.out.println("Hello World!");

 }

}

/**/

//Java program to illustrate error while using class from different package with

//default modifier

package p2;

import p1.*;

//This class is having default access modifier

class defaultdemonew

{

 public static void main(String args[])

 {

 //accessing class defaultdemo1 from package p1

 defaultdemo1 obj = new defaultdemo1();

 obj.display();

 }

}

/***/

//Output

Compile Time Error

University of Kashmir Department of Computer Science

13

5. Private Access Modifier Example:

//Java program to illustrate error while using class from different package with private

 //modifier

package p1;

 class A

{

 private void display()

 {

 System.out.println("GeeksforGeeks");

 }

}

/**/

class B

{

 public static void main(String args[])

 {

 A obj = new A();

 //trying to access private method of another class

 obj.display();

 }

}

/***/

//Output

error: display() has private access in A

obj.display();

University of Kashmir Department of Computer Science

14

6. Protected Access Modifier Example:

//Java program to illustrate protected modifier

package p1;

//Class A

public class A

{

 protected void display()

 {

 System.out.println("Hello world");

 }

}

/**/

//Java program to illustrate protected modifier

package p2;

import p1.*; //importing all classes in package p1

//Class B is subclass of A

class B extends A

{

 public static void main(String args[])

 {

 B obj = new B();

 obj.display();

 }

 }

/**/

//Output

Hello world

University of Kashmir Department of Computer Science

15

7. Public Access Modifier Example:

//Java program to illustrate public modifier

package p1;

public class A

{

 public void display()

 {

 System.out.println("Hello world");

 }

}

/**/

package p2;

import p1.*;

class B

{

 public static void main(String args[])

 {

 A obj = new A;

 obj.display();

 }

}

/**/

//Output

Hello world

University of Kashmir Department of Computer Science

16

JAVA Super Keyword:

1. super() invokes the constructor of the parent class.

2. super.variable_name refers to the variable in the parent class.

3. super.method_name refers to the method of the parent class.

super() invokes the constructor of the parent class

super() will invoke the constructor of the parent class. Before getting into that we will go

through the default behavior of the compiler. Even when you don’t add super() keyword the

compiler will add one and will invoke the Parent Class constructor.

Example 1:
class ParentClass

{

 public ParentClass()

 {

 System.out.println("Parent Class default Constructor");

 }

}

/***/

public class SubClass extends ParentClass

{

 public SubClass()

 {

 System.out.println("Child Class default Constructor");

 }

 public static void main(String args[])

 {

 SubClass s = new SubClass();

 }

}

Output
Parent Class default Constructor

Child Class default Constructor

Even when we add explicitly also it behaves the same way as it did before.

class ParentClass

{

 public ParentClass()

 {

 System.out.println("Parent Class default Constructor");

 }

}

/***/

public class SubClass extends ParentClass

{

 public SubClass()

https://javainterviewpoint.com/java-constructor-chaining-with-example/

University of Kashmir Department of Computer Science

17

 {

 super();

 System.out.println("Child Class default Constructor");

 }

 public static void main(String args[])

 {

 SubClass s = new SubClass();

 }

}

Output
Parent Class default Constructor

Child Class default Constructor

You can also call the parameterized constructor of the Parent Class. For example, super(10) will

call parameterized constructor of the Parent class.

Example 2:
class ParentClass

{

 public ParentClass()

 {

 System.out.println("Parent Class default Constructor called");

 }

 public ParentClass(int val)

 {

 System.out.println("Parent Class parameterized Constructor,

value: "+val);

 }

}

public class SubClass extends ParentClass

{

 public SubClass()

 {

 super();//Has to be the first statement in the constructor

 System.out.println("Child Class default Constructor called");

 }

 public SubClass(int val)

 {

 super(10);

 System.out.println("Child Class parameterized Constructor,

value: "+val);

 }

 public static void main(String args[])

 {

 //Calling default constructor

 SubClass s = new SubClass();

 //Calling parameterized constructor

 SubClass s1 = new SubClass(10);

 }

}

Output
Parent Class default Constructor called

University of Kashmir Department of Computer Science

18

Child Class default Constructor called

Parent Class parameterized Constructor, value: 10

Child Class parameterized Constructor, value: 10

super.variable_name refers to the variable in the parent

class

In the below given example we have the same variable in both parent and subclass.

class ParentClass

{

 int val=999;

}

public class SubClass extends ParentClass

{

 int val=123;

 public void disp()

 {

 System.out.println("Value is : "+val);

 }

 public static void main(String args[])

 {

 SubClass s = new SubClass();

 s.disp();

 }

}

Output
Value is : 123

Below given example will call only the val of the sub class. Without super keyword, you cannot

call the val which is present in the Parent Class.

class ParentClass

{

 int val=999;

}

public class SubClass extends ParentClass

{

 int val=123;

 public void disp()

 {

 System.out.println("Value is : "+super.val);

 }

 public static void main(String args[])

 {

 SubClass s = new SubClass();

 s.disp();

University of Kashmir Department of Computer Science

19

 }

}

Output
Value is : 999

super.method_name refers to the method of the parent class

When you override the Parent Class method in the Child Class without super keywords support

you will not be able to call the Parent Class method as shown in the below example:

class ParentClass

{

 public void disp()

 {

 System.out.println("Parent Class method");

 }

}

public class SubClass extends ParentClass

{

 public void disp()

 {

 System.out.println("Child Class method");

 }

 public void show()

 {

 disp();

 }

 public static void main(String args[])

 {

 SubClass s = new SubClass();

 s.show();

 }

}

Output:
Child Class method

Here we have overridden the Parent Class disp() method in the SubClass and hence SubClass

disp() method is called. If we want to call the Parent Class disp() method also means then we

have to use the super keyword for it.

class ParentClass

{

 public void disp()

 {

 System.out.println("Parent Class method");

 }

}

public class SubClass extends ParentClass

University of Kashmir Department of Computer Science

20

{

 public void disp()

 {

 System.out.println("Child Class method");

 }

 public void show()

 {

 //Calling SubClass disp() method

 disp();

 //Calling ParentClass disp() method

 super.disp();

 }

 public static void main(String args[])

 {

 SubClass s = new SubClass();

 s.show();

 }

}

Output

Child Class method

Parent Class method

When there is no method overriding then by default Parent Class disp() method will be called.

class ParentClass

{

 public void disp()

 {

 System.out.println("Parent Class method");

 }

}

public class SubClass extends ParentClass

{

 public void show()

 {

 disp();

 }

 public static void main(String args[])

 {

 SubClass s = new SubClass();

 s.show();

 }

}

Output
Parent Class method

University of Kashmir Department of Computer Science

21

Polymorphism

Polymorphism is the ability to take more than one form. Polymorphism is one of the most

important concept in OOPS (Object Oriented Programming Concepts). Subclasses of a class can

define their own unique behaviors and yet share some of the same functionality of the parent

class.

In Java, there are 2 ways by which you can achieve polymorphic behavior.

1. Method Overloading (Compile time Polymorphism (Static Binding))

2. Method Overriding (Run time Polymorphism (Dynamic Binding))

Runtime Polymorphism(Dynamic Binding)

Method Overriding in Java is the best example for Runtime Polymorphism. In this type of

Polymorphism the Parent class reference can hold object of Parent class or any sub

class(Child class) of Parent. This technique is called as Dynamic Method Dispatch

//Assigning Parent class Object to Parent class reference

Parent p = new Parent();

//Assigning Child class Object to Parent class reference

Parent p = new Child();

Dynamic Method Dispatch is a technique in which the overridden method to call is resolved at

the run-time rather than at compile time. In this technique we will be assigning the Child

object to the Parent class reference as depicted in the below code:

class Parent

{

 public void display(String name)

 {

 System.out.println("Welcome to Parent Class \""+name+"\"");

 }

 public void disp()

 {

 System.out.println("disp() method of Parent class");

 }

}

public class Child extends Parent

{

 public void display(String name)

 {

 System.out.println("Welcome to Child Class \""+name+"\"");

 }

 public void show()

 {

https://javainterviewpoint.com/category/java/
https://javainterviewpoint.com/run-time-polymorphism-and-compile-time-in-java/
https://javainterviewpoint.com/what-is-method-overriding-in-java/

University of Kashmir Department of Computer Science

22

 System.out.println("show() method of Child class");

 }

 public static void main(String args[])

 {

 //Assign Child Object to Parent class reference

 Parent pp = new Child();

 pp.display("JIP");

 }

}

Here we have assigned Child class object (new Child()) to Parent class reference (Parent

pp) and now come the question which of the display() method will be called. Here the new

Child() object is resolved in the run-time the display() method of the child class will be called

and hence the output will be

Welcome to Child Class "JIP"

What if the child class didn’t override the parent class method?

In the above example of Dynamic Method Dispatch the child class

has overridden the parent class display() method and hence the child class display() method is

called, now the question is what will happen if the child class didn’t override the parent class

method.

class Parent

{

 public void display(String name)

 {

 System.out.println("Welcome to Parent Class \""+name+"\"");

 }

 public void disp()

 {

 System.out.println("disp() method of Parent class");

 }

}

public class Child extends Parent

{

 public void show()

 {

 System.out.println("show() method of Child class");

 }

 public static void main(String args[])

 {

 //Assign Child object to Parent class reference

 Parent pp = new Child();

 pp.display("JIP");

 }

}

When the Child class didn’t override the Parent class method as in the above case then

the display() method of the Parent will be called.

Welcome to Parent Class "JIP"

University of Kashmir Department of Computer Science

23

Can the Child class method be called in the Dynamic Method Dispatch?

No the child class method cannot be called in Dynamic method dispatch as shown below:

class Parent

{

 public void display(String name)

 {

 System.out.println("Welcome to Parent Class \""+name+"\"");

 }

 public void disp()

 {

 System.out.println("disp() method of Parent class");

 }

}

public class Child extends Parent

{

 public void display(String name)

 {

 System.out.println("Welcome to Child Class \""+name+"\"");

 }

 public void show()

 {

 System.out.println("show() method of child class");

 }

 public static void main(String args[])

 {

 //Assign Child refernce to Parent class

 Parent pp = new Child();

 pp.show();

 }

}

When we run the above code then we will get the below compile time exception

“The method show() is undefined for the type Parent”.

 In Dynamic Method Dispatch

 The Overridden methods of the Child class can be called.

 Non-Overridden methods of the Parent class can be called.

 Child class methods cannot be called.

Abstract Class in Java

The abstract keyword can only be used on classes and methods in Java. An abstract

class cannot be instantiated and an abstract method can have no implementation. When a class

is declared with abstract keyword then that particular class cannot be instantiated. It can only

be extended and then all the methods of the abstract class needs to be implemented by the class

which extends our abstract class

https://javainterviewpoint.com/category/core-java/

University of Kashmir Department of Computer Science

24

Example of abstract class

abstract class A{}

An abstract class can have both abstract and non-abstract methods as well.

Abstract Method in Java

When a method has abstract keyword then the class should definitely be an abstract class and

when a method is declared abstract then it cannot have implementation.

Example of abstract method

abstract void disp();

Abstract classes and Abstract methods are like skeletons. It defines a structure, without any

implementation.

abstract class A

{

 abstract void disp();

 public void show()

 {

 System.out.println("Show method"):

 }

}

Example of Abstract Method and Abstract Class in Java

In this example, we have abstract class Car and an abstract method move(), the implementation

of the Car class is provided by Bmw Class and Audi Class.

abstract class Car

{

 public abstract void move();

}

class Bmw extends Car

{

 @Override

 public void move()

 {

 System.out.println("Move method of BMW");

 }

}

class Audi extends Car

{

 @Override

 public void move()

 {

https://javainterviewpoint.com/class-in-java-with-example/

University of Kashmir Department of Computer Science

25

 System.out.println("Move method of Audi");

 }

}

public class Logic

{

 public static void main(String args[])

 {

 Car c = new Bmw();

 c.move();

 }

}

Output
Move method of BMW

Can Abstract Class have constructor?

An abstract class can have constructor, abstract method, non abstract method , data member and

even main method as well.

abstract class Shape

{

 Shape()

 {

 System.out.println("Shape constructor called");

 }

 abstract void color();

 void size()

 {

 System.out.println("Size method called");

 }

}

class Rectangle extends Shape

{

 void color()

 {

 System.out.println("Color of Rectange is Blue");

 }

}

public class Logic

{

 public static void main(String args[])

 {

 Rectangle rect = new Rectangle();

 rect.color();

 rect.size();

 }

}

Output
Shape constructor called

Color of Rectange is Blue

Size method called

University of Kashmir Department of Computer Science

26

Note:

 If we have declared a method as abstract then you must declare the class as abstract,

abstract method cannot be present in a non-abstract class.

 Abstract Class can have concrete methods(non-abstract) as well.

 Abstract method should not have implementation(no body).

 Abstract method declaration should end with a semicolon (;)

 The class extending the abstract class should implement all the abstract methods.

INTERFACE:

An interface is a blueprint of a class, it can have methods and variables like a class but methods

declared in an interface will be by default abstract(only declaration no body) and the variables

declared will be public, static & final by default.

Use of Interface in Java

 Using interface we can achieve 100% abstraction in Java, as the methods don’t have

body and the class needs to implement them before they access it.

 Java does not support multiple inheritance. Using the interface we can achieve this as a

class can implement more than one interface.

Example:

interface Shape

{

 public abstract void size();

}

public class Logic implements Shape

{

 @Override

 public void size()

 {

 System.out.println("Size method implementation called");

 }

 public static void main(String args[])

 {

 Logic l = new Logic();

 l.size();

 //Dynamic binding

 Shape s = new Logic();

 s.size();

 }

}

Output
Size method implementation called

Size method implementation called

https://javainterviewpoint.com/difference-between-interface-and-abstract-class-in-java/
https://javainterviewpoint.com/category/core-java/

University of Kashmir Department of Computer Science

27

In the above code we have an interface “Shape” which has a abstract method “size()” and

Logic is the class which implements the size() method.

 Can Interfaces have constructor?

Unlike Abstract class which can have constructor, non abstract method , main method.

Interface cannot have Constructor, non abstract method and main method.

public interface Shape

{

 public Shape()

 {

 System.out.println("Constructor not allowed in Interface");

 }

 public abstract void size();

 public void disp()

 {

 System.out.println("non-abstract method not allowed in

Interface");

 }

 public static void main(String args[])

 {

 //Some Logic

 }

}

The above interface will throw compilation errors as the interface cannot have constructor, non-

abstract method and main method(as public and abstract qualifiers are only permitted).

Note:

 An Interface cannot be instantiated in Java.

 Methods declared in a interface should be public and abstract

 Interface cannot have concrete methods(non-abstract methods or methods with body)

 Variables declared should be public, static & final even though if you miss any one or all

the qualifiers it will be automatically assigned. All valid scenarios of variable declaration

are as shown below:

 interface Test

 {

 int a = 10;

 public int b = 10;

 static int c = 10;

 final int d = 10;

 static final int e =10;

 public static int f= 10;

 public final int g =10;

 }

University of Kashmir Department of Computer Science

28

 Interface variables must be initialized at the time of declaration else the compiler will

throw error. The following declaration is invalid.

 interface Test

 {

 int a;

 }

 An Interface can only extend other interface (only one)

 A Class can implement any number of interface

 interface Interface1

 {

 public void method1();

 }

 interface Interface2 extends Interface1

 {

 public void method2();

 }

 public class Demo implements Interface1,Interface2

 {

 public void method2()

 {

 }

 public void method1()

 {

 }

 public static void main(String args[])

 {

 }

 }

 If two interface have methods with same signature and same return type then the

implementing class can implement any one of those.

 interface Interface1

 {

 public void method1();

 }

 interface Interface2

 {

 public void method1();

 }

 public class Demo implements Interface1,Interface2

 {

 public void method1()

 {

 }

 public static void main(String args[])

 {

 }

 }

University of Kashmir Department of Computer Science

29

 If two interface have methods with same signature and different return type cannot be

implemented at the same time

 interface Interface1

 {

 public void method1();

 }

 interface Interface2

 {

 public int method1();

 }

 public class Demo implements Interface1,Interface2

 {

 public void method1() //will throw compilation error

 {

 }

 public int method1() //will throw compilation error

 {

 }

 public static void main(String args[])

 {

 }

 }

 In the implementing class we cannot change the variable value which is declared in the

interface as it is final by default

 interface Interface1

 {

 int val=10;

 public void method1();

 }

 public class Demo implements Interface1

 {

 public void method1()

 {

 }

 public static void main(String args[])

 {

 Interface1.val=20; //Will throw compilation error

 }

 }

SHADOWING:

A field is considered shadowed when

 a subclass of its declaring class declares a field with the same name.

 a variable having the same name and type is declared in the local scope.

 a method argument/parameter is declared with a same name and type.

University of Kashmir Department of Computer Science

30

 Local variable shadowing:

public class MyClass
{
 private int count = 10;
 private void localVariable()
 {
 int count = 5;
 System.out.println("count = "+ count);
 }

 public static void main(String[] args)
 {
 MyClass test = new MyClass();
 test.localVariable();
 }
}

The above code will output count = 5 because the count local variable declared at line

6 shadows the variable count declared at the class level. If we want to access the instance

variable, we need to add this keyword as shown below.

private void localVariable()

{

 int count = 5;

 System.out.println("count = "+ this.count);

}

Method argument shadowing

private int count;

public void setCount(int count)

{

 this.count = count;

}

This keyword is mandatory to resolve the ambiguity. Without this, the compiler cannot know

whether we are assigning the count method argument value to itself. If you

remove this keyword, you would get a compilation warning anyway.

Superclass field shadowing

University of Kashmir Department of Computer Science

31

public class SuperClass

{

 protected String val = "SUPER_VAL";

 protected void display()

 {

 System.out.println("val = "+this.val);

 }

}

public class ChildClass extends SuperClass

{

 private String val;

 public ChildClass(String value)

 {

 this.val = value;

 }

 public static void main(String[] args)

 {

 ChildClass child = new ChildClass("CHILD_VAL");

 child.display();

 }

}

The execution gives:

val = SUPER_VAL

The val field has been declared in the SuperClass but is shadowed in the ChildClass because

the latter declares another field with same name and type. Although the ChildClass has been

instantiated with “CHILD_VAL”, the execution of child.display() gives you “SUPER_VAL”.

The reason is simple. When the child instance is created, there are 2 variables val. The one

from SuperClass with value “SUPER_VAL” and the one from ChildClass with injected value

“CHILD_VAL” through a constructor.

When the display() method is called, since it is defined in the SuperClass, it is the val field in

the context of SuperClass which is used. Thus the output shows “SUPER_VAL”.

public class ChildClass extends SuperClass

{

 private String val;

 public ChildClass(String value)

 {

 this.val = value;

 super.val = value;

University of Kashmir Department of Computer Science

32

 }

 public static void main(String[] args)

 {

 ChildClass child = new ChildClass("CHILD_VAL");

 child.display();

 }

}

In the above-modified code, we force the value for the hidden val field

in SuperClass with super.val = value and the output gives:

val = CHILD_VAL

Now we add another class in the hierarchy to see how super keyword can be combined with

type casting.

public class AncestorClass

{

 protected String val = "ANCESTOR_VAL";

}

public class SuperClass extends AncestorClass

{

 protected String val = "SUPER_VAL";

}

public class ChildClass extends SuperClass

{

 private String val = "CHILD_VAL";

 public void displayVal()

 {

 System.out.println("val = " + super.val);

 }

 public static void main(String[] args)

 {

 ChildClass child = new ChildClass();

 child.displayVal();

 }

University of Kashmir Department of Computer Science

33

}

The output of the above program will be:

val = SUPER_VAL

Suppose we want to display the val value of ancestor class? Obviously, the super keyword only

refers to the first parent class up in the class hierarchy. Casting can be used to display the value

of the ancestor class.

public class ChildClass extends SuperClass

{

 private String val = "CHILD_VAL";

 public void displayVal()

 {

 System.out.println("val = " + ((AncestorClass) this).val);

 }

 public static void main(String[] args)

 {

 ChildClass child = new ChildClass();

 child.displayVal();

 }

}

Now the output will be val = ANCESTOR_VAL.

Static Blocks

Unlike C++, Java supports a special block, called static block (also called static clause) which can be used

for static initializations of a class. The code inside static block is executed only once: the first time you

make an object of that class or the first time you access a static member of that class (even if you never

make an object of that class).Consider the following example:

class Test

{

 static int i;

 int j;

 // start of static block

University of Kashmir Department of Computer Science

34

 Static

 {

 i = 10;

 System.out.println("static block called ");

 } // end of static block

 }

class Main

{

 public static void main(String args[])

 {

 // Although we don't have an object of Test, static block is called because i is being accessed in

//following statement.

 System.out.println(Test.i);

 }

}

Output:

static block called

10

 Also, static blocks are executed before constructors. Consider the following example:

class Test

 {

 static int i;

 int j;

 static

 {

 i = 10;

 System.out.println("static block called ");

 }

 Test()

 {

 System.out.println("Constructor called");

 }

 }

 class Main

 {

 public static void main(String args[])

 {

 // Although we have two objects, static block is executed only once.

 Test t1 = new Test();

 Test t2 = new Test();

University of Kashmir Department of Computer Science

35

 }

 }

 Output:

 static block called

 Constructor called

 Constructor called

 Static Block

 A class can have multiple Static blocks, which will execute in the same sequence in

which they have been written into the program.

Example 1: Single Static Block

class JavaExample

{

 static int num;

 static String mystr;

 static

 {

 num = 97;

 mystr = "Static keyword in Java";

 }

 public static void main(String args[])

 {

 System.out.println("Value of num: "+num);

 System.out.println("Value of mystr: "+mystr);

 }

}

Output:

Value of num: 97

Value of mystr: Static keyword in Java

Example 2: Multiple Static Block

They execute in the given order which means the first static block executes before second

static block. Thus, values initialized by first block are overwritten by second block.

class JavaExample2

{

 static int num;

 static String mystr;

 //First Static block

 Static

 {

 System.out.println("Static Block 1");

 num = 68;

University of Kashmir Department of Computer Science

36

 mystr = "Block1";

 }

 //Second static block

 Static

 {

 System.out.println("Static Block 2");

 num = 98;

 mystr = "Block2";

 }

 public static void main(String args[])

 {

 System.out.println("Value of num: "+num);

 System.out.println("Value of mystr: "+mystr);

 }

}

Output:

Static Block 1

Static Block 2

Value of num: 98

Value of mystr: Block2

Note:

 A static block is a block of code which contains code that executes at class loading time.

 A static keyword is prefixed before the start of the block.

 All static variables can be accessed freely

 Any non-static fields can only be accessed through object reference, thus only after object

construction.

 multiple static blocks would execute in the order they are defined in the class.

 All static blocks executes only once per classloader.

Non Static Blocks

 The Non-static blocks are class level blocks which do not have any prototype.

 The need for a non-static block is to execute any logic whenever an object is created

irrespective of the constructor.

 The Non-static blocks are automatically called by the JVM for every object creation in

the java stack area.

 We can create any number of Non-static blocks in Java.

 There is no keyword prefix to make a block non-static block, unlike static blocks.

University of Kashmir Department of Computer Science

37

 In case of multiple non-static blocks, the block executes the order in which it is defined in

the class.

 All static and non-static fields can be access freely.

 All non-static block executes every time an object of the containing class is created.

A typical non-static block looks like :

{

// non static block

}

Example:

public class NonStaticBlockTest {

 {

 System.out.println("First Non-Static Block"); // first non-static block

 }

 {

 System.out.println("Second Non-Static Block"); // second non-static block

 }

 {

 System.out.println("Third Non-Static Block"); // third non-static block

 }

 NonStaticBlockTest() {

 System.out.println("Execution of a Constructor"); // Constructor

 }

 public static void main(String args[]) {

 NonStaticBlockTest nsbt1 = new NonStaticBlockTest();

 NonStaticBlockTest nsbt2 = new NonStaticBlockTest();

 }

}

Output

First Non-Static Block

Second Non-Static Block

Third Non-Static Block

Execution of a Constructor

First Non-Static Block

Second Non-Static Block

Third Non-Static Block

Execution of a Constructor

University of Kashmir Department of Computer Science

38

EXCEPTION

An exception (or exceptional event) is a problem that arises during the execution of a program.

When an Exception occurs the normal flow of the program is disrupted and the

program/Application terminates abnormally, which is not recommended, therefore, these

exceptions are to be handled.

An exception can occur for many different reasons. Following are some scenarios where an

exception occurs.

 A user has entered an invalid data.

 A file that needs to be opened cannot be found.

 A network connection has been lost in the middle of communications or the JVM has run

out of memory.

Some of these exceptions are caused by user error, others by programmer error, and others by

physical resources that have failed in some manner.

Exception Hierarchy:

All exception and errors types are sub classes of class Throwable, which is base class of

hierarchy.One branch is headed by Exception. This class is used for exceptional conditions that

user programs should catch. NullPointerException is an example of such an exception. Another

branch,Error are used by the Java run-time system(JVM) to indicate errors having to do with

the run-time environment itself(JRE). StackOverflowError is an example of such an error.

https://www.geeksforgeeks.org/jvm-works-jvm-architecture/

University of Kashmir Department of Computer Science

39

 Checked Exceptions: are the exceptions that are checked at compile time. If some

code within a method throws a checked exception, then the method must either

handle the exception or it must specify the exception using throws keyword.

Example: Consider an example were we are reading a file myfile.txt and

displaying its content on the screen. In this program there are three places where a

checked exception is thrown. FileInputStream which is used for specifying the file

path and name, throws FileNotFoundException. The read() method which reads

the file content throws IOException and the close() method which closes the file

input stream also throws IOException.

import java.io.*;
class Example {
public static void main(String args[])
{
FileInputStream fis = null;
/*This constructor FileInputStream(File filename)
* throws FileNotFoundException which is a checked
* exception
*/
fis = new FileInputStream("B:/myfile.txt");
int k;

/* Method read() of FileInputStream class also throws
* a checked exception: IOException
*/
while((k = fis.read()) != -1)
{
System.out.print((char)k);
}

/*The method close() closes the file input stream
* It throws IOException*/
fis.close();
}
}

Output:

Exception in thread "main" java.lang.Error: Unresolved compilation
problems:
Unhandled exception type FileNotFoundException
Unhandled exception type IOException
Unhandled exception type IOException

There are two ways to resolve the checked compilation error:

o Using throws keyword

o Using try catch blocks

University of Kashmir Department of Computer Science

40

 Method 1: Declare the exception using throws keyword:

Since all three occurrences of checked exceptions are inside main() method so one way to avoid

the compilation error is: Declare the exception in the method using throws keyword. However,

our code is throwing FileNotFoundException and IOException both but we are declaring the

IOException alone. The reason is that IOException is a parent class of FileNotFoundException

so it by default covers that. We can also declare as shown:

 public static void main(String args[]) throws IOException, FileNotFoundException.

import java.io.*;
class Example {
 public static void main(String args[]) throws IOException
 {
 FileInputStream fis = null;
 fis = new FileInputStream("B:/myfile.txt");
 int k;

 while((k = fis.read()) != -1)
 {
 System.out.print((char)k);
 }
 fis.close();
 }
}

Output:

File content is displayed on the screen.

Method 2: Handle them using try-catch blocks.
The approach we have used above is not the best exception handling practice. We should give

meaningful message for each exception type so that it would be easy for someone to understand

the error. The code should be like this:

import java.io.*;
class Example {
 public static void main(String args[])
 {
 FileInputStream fis = null;
 try{
 fis = new FileInputStream("B:/myfile.txt");
 }catch(FileNotFoundException fnfe){
 System.out.println("The specified file is not " +
 "present at the given path");
 }
 int k;
 try{
 while((k = fis.read()) != -1)
 {
 System.out.print((char)k);
 }

https://beginnersbook.com/2013/04/java-exception-handling/

University of Kashmir Department of Computer Science

41

 fis.close();
 }catch(IOException ioe){
 System.out.println("I/O error occurred: "+ioe);
 }
 }
}

Output:

File content is displayed on the screen.

Some other Checked Exceptions include –

 SQLException

 IOException

 ClassNotFoundException

 InvocationTargetException

 Unchecked Exceptions: Unchecked exceptions are not checked at compile time.

It means if your program is throwing an unchecked exception and even if you

didn’t handle/declare that exception, the program won’t give a compilation error.

Most of the times these exception occurs due to the bad data provided by user

during the user-program interaction. It is up to the programmer to judge the

conditions in advance, that can cause such exceptions and handle them

appropriately. All Unchecked exceptions are direct sub classes

of RuntimeException class.

Example:

class Example {
 public static void main(String args[])
 {
 int arr[] ={1,2,3,4,5};
 /* My array has only 5 elements but we are trying to
 * display the value of 8th element. It should throw
 * ArrayIndexOutOfBoundsException
 */
 System.out.println(arr[7]);
 }
}

This code will compile successfully. However, at runtime it will show an

ArrayIndexOutOfBounds Exception. Such a situation can be handled as shown:

University of Kashmir Department of Computer Science

42

class Example {
 public static void main(String args[]) {
 try{
 int arr[] ={1,2,3,4,5};
 System.out.println(arr[7]);
 }
 catch(ArrayIndexOutOfBoundsException e){
 System.out.println("The specified index does not exist " +
 "in array. Please correct the error.");
 }
 }
}

Output:

The specified index does not exist in array. Please correct the error.

Some other cases of unchecked exceptions include:

 NullPointerException

 ArrayIndexOutOfBoundsException

 ArithmeticException

 IllegalArgumentException

 NumberFormatException

Types of Exceptions:

1. Built-in Exceptions

Built-in Exceptions Description

 ArithmeticException
It is thrown when an exceptional condition has occurred in

an arithmetic operation.

 ArrayIndexOutOfBoundsException

It is thrown to indicate that an array has been accessed with

an illegal index. The index is either negative or greater than

or equal to the size of the array.

 ClassNotFoundException
This exception is raised when we try to access a class

whose definition is not found.

FileNotFoundException
An exception that is raised when a file is not accessible or

does not open.

IOException
It is thrown when an input-output operation is failed or

interrupted.

InterruptedException
It is thrown when a thread is waiting, sleeping, or doing

some processing, and it is interrupted.

NoSuchFieldException
It is thrown when a class does not contain the field (or

variable) specified.

University of Kashmir Department of Computer Science

43

2. User Defined Exceptions/ Custom Exceptions

Sometimes, the built-in exceptions in Java are not able to describe a certain situation. In

such cases, a user can also create exceptions which are called ‘User-Defined Exceptions’.

 A user-defined exception must extend Exception class.

 The exception is thrown using throw keyword.

Example:

class MyException extends Throwable

{

 String str1;

 MyException(String str2) {str1=str2;}

 public String toString(){

 return ("MyException Occurred: "+str1);

}

}

class Example1

{

public static void main(String args[]){

 try{

 System.out.println("Start of try block");

 throw new MyException(“Error Message");

 }

 catch(MyException exp)

 {

 System.out.println("Catch Block");

 System.out.println(exp);

 }

 }

}

Exception Handling / Catch or Specify Policy:

Catch or Specify Requirement or policy means that code that might throw certain exceptions

must be enclosed by either of the following:

 A try statement that catches the exception and a handler for the exception, as described

below.

 A method that specifies that it can throw the exception. The method must provide

a throws clause that lists the exception as described below.

Java provides various methods to handle the Exceptions like:

 try

 catch

University of Kashmir Department of Computer Science

44

 finally

 throw

 throws

try block

The try block contains a set of statements where an exception can occur. It is always followed by

a catch block, which handles the exception that occurs in the associated try block. A try block

must be followed by catch blocks or finally block or both.

try

{

//code that may throw exception

}

catch(Exception_class_Name ref)

{

}

Nested try block

Example:

class Exception{

 public static void main(String args[]){

 try{

 try{

 System.out.println("going to divide");

 int b=59/0;

 }catch(ArithmeticException e){System.out.println(e);}

 try{

 int a[]=new int[5];

 a[5]=4;

 }

 catch(ArrayIndexOutOfBoundsException e) {System.out.println(e);}

 System.out.println("other statement”);

 }catch(Throwable e)

 {System.out.println("Exception handeled");}

 System.out.println("casual flow");

 }

}

catch block

A catch block is where you handle the exceptions. This block must follow the try block and a

single try block can have several catch blocks associated with it. You can catch different

exceptions in different catch blocks. When an exception occurs in a try block, the corresponding

catch block that handles that particular exception executes.

University of Kashmir Department of Computer Science

45

Multi-catch block:

Example:

public class SampleMultipleCatchBlock{

 public static void main(String args[]){

 try{

 int a[]=new int[5];

 a[5]=30/0;

 }

 catch(ArithmeticException e)

 {System.out.println("task1 is completed");}

 catch(ArrayIndexOutOfBoundsException e)

 {System.out.println("task 2 completed");}

 catch(Throwable e)

 {System.out.println("task 3 completed");}

 System.out.println("remaining code");

 }

}

finally block

A finally block contains all the crucial statements that must be executed whether an exception

occurs or not. The statements present in this block will always execute, regardless an exception

occurs in the try block or not such as closing a connection, stream etc.

class SampleFinallyBlock{

 public static void main(String args[]){

 try{

 int data=55/5;

 System.out.println(data);

 }

 catch(NullPointerException e)

 {System.out.println(e);}

 finally {System.out.println("finally block is executed");}

 System.out.println("remaining code");

 }

}

University of Kashmir Department of Computer Science

46

final vs finally vs finalize

final Finally finalize

It is a keyword. It is a block. It is a method.

Used to apply restrictions on

class, methods & variables.
Used to place an important code.

Used to perform clean-up

processing just before the object

is garbage collected.

final class can’t be inherited,

method can’t be overridden &

the variable value can’t be

changed.

It will be executed whether the

exception is handled or not.
–

throw vs throws

Throw throws

 1. Used to explicitly throw an exception 1. Used to declare an exception

 2. Checked exceptions cannot be propagated using

throw only
 2. Checked exceptions can be propagated

 3. Followed by an instance 3. Followed by a class

 4. Used within a method 4. Used with a method signature

 5. Cannot throw multiple exceptions 5. Can declare multiple exceptions

//Java throw example

void a()

{

 throw new ArithmeticException("Incorrect");

}

//Java throws example

void a()throws ArithmeticException

{

 //method code

}

//Java throw and throws example

void a()throws ArithmeticException

{

 throw new ArithmeticException("Incorrect");

}

University of Kashmir Department of Computer Science

47

CHAINED EXCEPTIONS:
Chained Exceptions allows to relate one exception with another exception, i.e one exception

describes cause of another exception. For example, consider a situation in which a method

throws an ArithmeticException because of an attempt to divide by zero but the actual cause of

exception was an I/O error which caused the divisor to be zero. The method will throw only

ArithmeticException to the caller. So the caller would not come to know about the actual cause

of exception. Chained Exception is used in such type of situations.

Constructors Of Throwable class Which support chained exceptions in java :

1. Throwable(Throwable cause) :- Where cause is the exception that causes the current

exception.

2. Throwable(String msg, Throwable cause) :- Where msg is the exception message and cause

is the exception that causes the current exception.

Methods Of Throwable class Which support chained exceptions in java :

1. getCause() method :- This method returns actual cause of an exception.

2. initCause(Throwable cause) method :- This method sets the cause for the calling exception.

Example of using Chained Exception:

// Java program to demonstrate working of chained exceptions
public class ExceptionHandling
{
 public static void main(String[] args)
 {
 try
 {
 // Creating an exception
 NumberFormatException ex =
 new NumberFormatException("Exception");

 // Setting a cause of the exception
 ex.initCause(new NullPointerException(
 "This is actual cause of the exception"));

 // Throwing an exception with cause.
 throw ex;
 }

 catch(NumberFormatException ex)
 {
 // displaying the exception
 System.out.println(ex);

 // Getting the actual cause of the exception
 System.out.println(ex.getCause());
 }
 }

University of Kashmir Department of Computer Science

48

}

Output:

java.lang.NumberFormatException: Exception

java.lang.NullPointerException: This is actual cause of the exception

