
String Instructions 
A string is simply an array of bytes or words 

Here are some operations which may be performed with string instructions 
copy a string into another string 
search a string for a particular byte or word 

store characters in a string 
compare strings of characters alphabetically 

The Direction Flag 

One of the control flags in the FLAGS register is the direction flag (DF) 
It determines the direction in which string operations will proceed 

The string operations are implemented by the two index registers SI and DI 
If DF = 0, SI and DI proceed in the direction of increasing memory addresses 
If DF = 1, they proceed in decreasing direction 

CLD and STD 
To make DF = 0, use the cld instruction 
cld ;clear direction flag 

To make DF = 1, use the std instruction 
std ;set direction flag 

cld and std have no effect on the other flags 

Moving a String 
Suppose we have defined two strings 
DATASEG 

string1 DB "HELLO" 

string2 DB 5 DUP (?) 

The movsb instruction 
movsb ;move string byte 

copies the contents of the byte addressed by DS:SI to the byte addressed by ES:DI 

after the byte is moved, both SI and DI are incremented if DF=0; if DF=1, they are decremented 

MOVSB example 
To copy the first two bytes of str1 to str2, we use the following instructions: 
mov ax,@data 

mov ds,ax ;initialize ds 

mov es,ax ; and es 

lea si,[str1] ;si points to source string 

lea di,[str2] ;di points to dest string 

cld ;set df=0 (increasing) 

movsb ;move first byte 

movsb ;move second byte 

The REP Prefix 
movsb moves only a single byte from the source string to the destination 
To move the entire string, first initialize cx to the number N of bytes in the source string and execute rep movsb 

The rep prefix causes movsb to be executed N times 
After each movsb, cx is decremented until it becomes 0 

REP Example 
mov ax,@data 

mov ds,ax ;initialize ds 



mov es,ax ; and es 
lea si,[str1] ;si points to source string 

lea di,[str2] ;di points to dest string 

cld ;set df=0 (increasing) 

mov cx,5 ;# of chars in string1 

rep movsb ;copy the string 

MOVSW 
The word form of movsb is movsw 
movsw ;move string word 

movsw moves words rather than bytes 
After the string word has been moved, both SI and DI are incremented (or decremented) by 2 
Neither movsb nor movsw have any effect on the flags 

The STOSB and STOSW Instructions 
stosb ;store string byte 

Moves the contents of the AL register to the byte addressed by ES:DI 

DI is incremented if DF=0 or decremented if DF=1 
Similarly, 

stosw ;store string word 

Moves the contents of AX register to the word addressed by ES:DI 

DI is incremented or decremented by 2 
Neither stosb nor stosw have any effect on the flags 

Code using STOSB 
mov ax,@data 

mov es, ax ;initialize es 

lea di,[str] ;di points to str 

cld ;process to the right 

mov al,'A' ;al has char to store 

stosb ;store an 'A' 

stosb ;store another one 

Reading and Storing a Character String 
Int 21h, function 1 reads a character from the keyboard into AL 
Use interrupt with stosb to read a character string 

Pseudocode: 
chars_read = 0 
read a character (using int 21h, fcn 1) 

while character is not CR do 
if char is BS then 

chars_read = chars_read - 1 
back up in string 
else 

store char in string 
chars_read = chars_read + 1 

endif 
read another character 

endwhile 

Code to Read a String 
cld ;process from left 



xor bx,bx ;BX holds no. of chars read 

mov ah,1 ;input char function 

int 21h ;read a char into AL 

WHILE1: cmp al,0Dh ;<CR>? 

je ENDWHLE1 ;yes, exit 

;if char is backspace 

cmp al,08h ;is char a backspace? 

jne ELSE1 ;no, store in string 

dec di ;yes, move string ptr back 

dec bx ;decrement char counter 

jmp read ;and go to read another char 

ELSE1: stosb ;store char in string 

inc bx ;increment char count 

READ: int 21h ;read a char into AL 

jmp WHILE1 ;and continue loop 

ENDWHLE1: 

See READSTR.ASM for a complete procedure 

The LODSB Instruction 
lodsb ;load string byte 

Moves the byte addressed by DS:SI into the AL register 
SI is incremented if DF=0 or decremented if DF=1 

Similarly, 

lodsw ;store string word 

Moves the word addressed by DS:SI into the AX register 
SI is incremented or decremented by 2 
Neither lodsb nor lodsw have any effect on the flags 

Code using LODSB 
DATASEG 

str DB 'ABC' ;define string 

CODESEG 

mov ax,@data 

mov ds, ax ;initialize ds 

lea si,[str] ;si points to str 

cld ;process left to right 

lodsb ;load first byte in al 

lodsb ;load second byte in al 

Displaying a Character String 
Int 21h, function 2 displays the character in dl 
Use interrupt with lodsb to display a character string 

Pseudocode: 
for count times do 

load string character into al 
move it to dl 

output the character 
endfor 



Code to Display a String 
cld ;process from left 

mov cx,number ;cx holds no. of chars 

jcxz ENDFOR ;exit if none 

mov ah,2 ;display char function 

TOP: 

lodsb ;char in al 

mov dl,al ;move it to dl 

int 21h ;display character 

loop TOP ;loop until done 

ENDFOR: 

Scan String 
scasb ;scan string byte 

examines a string for a target byte (contained in al) 

subtracts the string byte pointed to by es:di from al and sets the flags 
the result is not stored 

di is incremented if df = 0 or decremented if df = 1 

SCASW 
scasw is the word form of scan string 

The target word is in ax 
di is incremented or decremented by 2 depending on the value of df 
All the status flags are affected by scasb and scasw 

SCASB Example 
DATASEG 

str DB 'ABC' ;define string 

CODESEG 

mov ax,@data 

mov es,ax ;initialize es 

cld ;process left to right 

lea di,[str] ;di points to str 

mov al,'B' ;target character 

scasb ;scan first byte 

scasb ;scan second byte 

REPNE, REPNZ, REPE, and REPZ 
In looking for a target byte, the string is traversed until a match is found or the string ends 
As with rep, cx is initialized to the length of the string 

repne scansb (repeat while not equal) will repeatedly subtract each string byte from al, update di, and 

decrement cx 
until either the target is found (zf = 1) or cx = 0 

repnz is a synonym for repne 
repe (repeat while equal) repeats a string instruction until zf = 0 or cx = 0 

repz is a synonym for repe 

Comparing Strings 
The cmpsb instruction 

cmpsb ;compare string byte 

subtracts the byte addressed by DS:SI from the byte addressed by ES:DI, sets the flags, and throws the result away 

afterward, both SI and DI are incremented if DF=0; if DF=1, they are decremented 



The word version of cmpsb is 

cmpsw ;compare string word 

All status flags are affected by cmpsb and cmpsw 

Example of CMPSB 
mov ax,@data 

mov ds,ax ;initialize ds 

mov es,ax ; and es 

lea si,[string1] ;si points to first string 

lea di,[string2] ;di points to second string 

cld ;left to right processing 

mov cx,10 ;# of chars in strings 

repe cmpsb ;compare string bytes 

jl S1_1st ;string1 precedes string2 

jg S2_1st ;string2 precedes string1 

mov ax, 0 ;put 0 in ax, string1=string2 

jmp EXIT ;and exit 

S1_1st: 

mov ax, 1 ;put 1 in ax, string1>string2 

jmp EXIT ;and exit 

S2_1st: 

mov ax, -1 ;put -1 in ax, string1<string2 

EXIT: 


