
Procedure Declaration 
The syntax of procedure declaration is the following: 
PROC name type 

; body of procedure 
ret 

ENDP name 

type can be NEAR (in same segment) or FAR (in a different segment) -- if omitted, NEAR is assumed 

The CALL Instruction 
CALL invokes a procedure 

CALL has two forms, direct 
call name 

where name is the name of a procedure, and indirect 

call address_expression (not generally recommended) 

where address_expression specifies a register or memory location containing the address of a procedure 

Executing a CALL 
The return address to the calling program (the current value of the IP) is saved on the stack 

IP get the offset address of the first instruction of the procedure (this transfers control to the procedure) 
FAR procedures must process CS:IP instead of just IP 

The RET instruction 
To return from a procedure, the instruction 
ret pop_value 

is executed 
The integer argument pop_value is optional 

ret causes the stack to be popped into IP 
If pop_value N is specified, it is added to SP -- in effect removes N additional bytes from the stack 

Parameter Passing 

Parameters can be passed to the called procedure using any of the following ways 

. Through Registers 

. Through the stack 

. Through shared memory 

The values returned if any by the procedure can also be returned in the same way. 

Far Procedure 

A procedure which is called from the other segment is known as far procedure. An intersegment CALL instruction is 

used to call a far procedure which save both the segment base and the offset of the next instruction onto the stack. 

The far procedure uses the far RET to return from the procedure by retrieving the offset and the segment address 

from the stack to resume the execution from correct point in the segment of the caller. 


