

**SYLLABUS  
FOR  
MASTER OF TECHNOLOGY  
IN  
COMPUTER SCIENCE AND ENGINEERING**



**SCHOOL OF ENGINEERING  
UNIVERSITY OF KASHMIR  
SRINAGAR**

**(Applicable to Batch 2024 & Onwards)**

## PROGRAM LEARNING OUTCOMES (PLOs)

Program Learning Outcomes for M.Tech in Computer Science and Engineering:

1. Computing Knowledge: Apply the advanced knowledge of computer science, mathematics, and engineering fundamentals to solve complex problems in software engineering and related fields.
2. Problem Analysis: Identify, formulate, and analyze complex computing problems by reviewing research literature and using first principles of computer science, algorithms, and software engineering sciences to reach substantiated conclusions.
3. Design/Development of Solutions: Design innovative computer based solutions for complex computing problems, considering public ethics, health and safety, and cultural, societal, and environmental factors while meeting specified requirements.
4. Conduct Investigations of Complex Problems: Utilize advanced research-based knowledge and methods, including experimental design, data analysis, and information synthesis, to investigate and provide valid conclusions for complex computing problems.
5. Modern Tool Usage: Develop and apply advanced techniques, tools, and resources, including predictive modeling and modern software engineering and development tools, to complex computing activities with an understanding of their limitations.
6. The Software Engineer and Society: Assess societal, ethical, legal, and cultural issues using contextual knowledge and apply this understanding to professional software development practices, recognizing the associated responsibilities.
7. Environment and Sustainability: Evaluate the impact of professional software engineering solutions on society and the environment, demonstrating a commitment to sustainable development practices.
8. Ethics: Adhere to and promote ethical principles and professional responsibilities in software engineering practices, with a strong emphasis on maintaining privacy and data security.
9. Individual and Team Work: Work effectively as an individual, as well as a member or leader of diverse and multidisciplinary teams, demonstrating strong collaboration and leadership skills.
10. Communication: Communicate complex technical concepts and solutions effectively with peers, professionals, and the broader community, through well-organized reports, design documentation, presentations, and clear instructions.
11. Project Management and Finance: Apply advanced knowledge of software engineering and management principles to plan, manage, and execute projects efficiently, considering financial constraints and resource management in multidisciplinary environments.
12. Life-long Learning: Recognize and engage in continuous learning and professional development to keep up with the evolving technological landscape and advancements in computer science and engineering.

These outcomes ensure that graduates are equipped with the necessary skills and knowledge to excel in their professional careers and contribute effectively to the advancement of the computer science and engineering field.



**COURSE STRUCTURE (CURRICULUM) OF M.TECH. CSE (EFFECTIVE FROM BATCH 2024)**

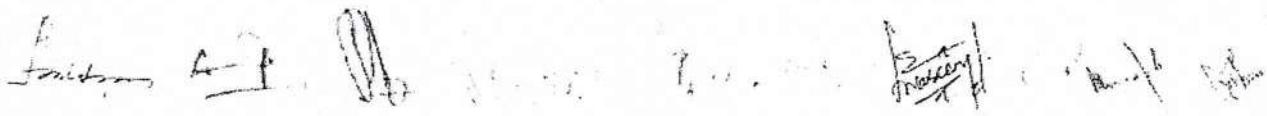
| S. No. | Course Code | Course Name                                  | Hours |   |   | Credits | Marks |     |       |
|--------|-------------|----------------------------------------------|-------|---|---|---------|-------|-----|-------|
|        |             |                                              | L     | T | P |         | ISE   | ESE | Total |
| 1      | MCSECMF124  | Mathematical Foundations of Computer Science | 4     | - | - | 4       | 28    | 72  | 100   |
| 2      | MCSECD124   | Advanced Data Structures                     | 4     | - | - | 4       | 28    | 72  | 100   |
| 3      | MCSECRM124  | Research Methodology and IPR                 | 2     | - | - | 2       | 14    | 36  | 50    |
| 4      | MCSEDXX124  | Program Elective-I                           | 4     | - | - | 4       | 28    | 72  | 100   |
| 5      | MCSEDXX124  | Program Elective-II                          | 4     | - | - | 4       | 28    | 72  | 100   |
| 6      | MCSEAXX124  | Audit Course                                 | 2     | - | - | 0       | -     | -   | -     |
| 7      | MCSELDS124  | Advanced Data Structures Lab                 | -     | - | 4 | 2       | 14    | 36  | 50    |
| 8      | MCSELXX124  | Program Elective-II Lab                      | -     | - | 4 | 2       | 14    | 36  | 50    |
| Total: |             |                                              | 28    |   |   | 154     | 396   | 550 |       |

| S. No. | Course Code | Course Name               | Hours |   |   | Credits | Marks |     |       |
|--------|-------------|---------------------------|-------|---|---|---------|-------|-----|-------|
|        |             |                           | L     | T | P |         | ISE   | ESE | Total |
| 1      | MCSECAL224  | Advanced Algorithms       | 4     | - | - | 4       | 28    | 72  | 100   |
| 2      | MCSECSC224  | Soft Computing            | 4     | - | - | 4       | 28    | 72  | 100   |
| 3      | MCSECPS224  | Mini Project with Seminar | -     | - | 4 | 2       | 14    | 36  | 50    |
| 4      | MCSEDXX224  | Program Elective-III      | 4     | - | - | 4       | 28    | 72  | 100   |
| 5      | MCSEDXX224  | Program Elective-IV       | 2     | - | - | 0       | -     | -   | -     |
| 6      | MCSEAXX224  | Audit Course              | -     | - | 4 | 2       | 14    | 36  | 50    |
| 7      | MCSELAL224  | Advanced Algorithms Lab   | -     | - | 4 | 2       | 14    | 36  | 50    |
| 8      | MCSELXX224  | Program Elective-IV Lab   | -     | - | 4 | 2       | 14    | 36  | 50    |
| Total: |             |                           | 30    |   |   | 154     | 396   | 550 |       |

| S. No. | Course Code | Course Name                       | Hours |   |    | Credits | Marks |     |       |
|--------|-------------|-----------------------------------|-------|---|----|---------|-------|-----|-------|
|        |             |                                   | L     | T | P  |         | ISE   | ESE | Total |
| 1      | MCSEDXX324  | Program Elective-V                | 3     | - | -  | 3       | 21    | 54  | 75    |
| 2      | MCSEFOXX324 | Open Elective                     | 3     | - | -  | 3       | 21    | 54  | 75    |
| 3      | MCSELXX324  | Program Elective-V Lab            | -     | - | 4  | 2       | 14    | 36  | 50    |
| 4      | MCSEPD1324  | Dissertation-I/Industrial Project | 6     | - | 16 | 14      | 98    | 252 | 350   |
| Total: |             |                                   | 32    |   |    | 154     | 396   | 550 |       |

| S. No. | Course Code | Course Name                        | Hours |   |    | Credits | Marks |     |       |
|--------|-------------|------------------------------------|-------|---|----|---------|-------|-----|-------|
|        |             |                                    | L     | T | P  |         | ISE   | ESE | Total |
| 1      | MCSEPD1424  | Dissertation-II/Industrial Project | 8     | 4 | 20 | 22      | 154   | 396 | 550   |
| Total: |             |                                    | 32    |   |    | 154     | 396   | 550 |       |

### Elective Baskets


| Program Electives I and II |                                                     |
|----------------------------|-----------------------------------------------------|
| MCSEDAA124                 | Data Science                                        |
| MCSEDAB124                 | Distributed Systems                                 |
| MCSEDAC124                 | Data Preparation and Analysis                       |
| MCSEDAD124                 | Recommender System                                  |
| MCSEDAE124                 | Machine Learning                                    |
| MCSEDAF124                 | Data Storage Technologies and Networks              |
| MCSEDAG124                 | Digital Image Processing                            |
| MCSEDAH124                 | Digital Forensics                                   |
| MCSEDAI124                 | Ethical Hacking                                     |
| MCSEDAJ124                 | Malware Analysis & Reverse Engineering              |
| MCSEDAK124                 | Secure Software Design and Enterprise Computing     |
| MCSEDAL124                 | Biometrics                                          |
| MCSEDAM124                 | Next Generation Networks                            |
| MCSEDAN124                 | Graph Theory                                        |
| LAB                        |                                                     |
| MCSELAA124                 | Data Science Lab                                    |
| MCSELAB124                 | Distributed Systems Lab                             |
| MCSELAC124                 | Data Preparation and Analysis Lab                   |
| MCSELAD124                 | Recommender System Lab                              |
| MCSELAE124                 | Machine Learning Lab                                |
| MCSELAF124                 | Data Storage Technologies and Networks Lab          |
| MCSELAG124                 | Digital Image Processing Lab                        |
| MCSELAH124                 | Digital Forensics Lab                               |
| MCSELAI124                 | Ethical Hacking Lab                                 |
| MCSELAJ124                 | Malware Analysis & Reverse Engineering Lab          |
| MCSELAK124                 | Secure Software Design and Enterprise Computing Lab |
| MCSELAL124                 | Biometrics Lab                                      |
| MCSELAM124                 | Next Generation Networks Lab                        |
| MCSELAN124                 | Graph Theory Lab                                    |

| Program Electives III and IV |                                       |
|------------------------------|---------------------------------------|
| MCSEDAA224                   | Data Visualization                    |
| MCSEDAB224                   | Big Data Analytics                    |
| MCSEDAC224                   | Data Warehouse and Data Mining        |
| MCSEDAD224                   | Data Security and Access Control      |
| MCSEDAE224                   | Web Analytics and Development         |
| MCSEDAF224                   | Knowledge Discovery                   |
| MCSEDAG224                   | Introduction to Deep Learning         |
| MCSEDAH224                   | Pattern Recognition                   |
| MCSEDAI224                   | Intrusion Detection                   |
| MCSEDAJ224                   | Data Encryption & Compression         |
| MCSEDAK224                   | Steganography & Digital Watermarking  |
| MCSEDAL224                   | Information Theory & Coding           |
| MCSEDAM224                   | Security Assessment and Risk Analysis |
| MCSEDAN224                   | Secure Coding                         |
| MCSEDAO224                   | Network Security                      |
| LAB                          |                                       |
| MCSELAA224                   | Data Visualization Lab                |
| MCSELAB224                   | Big Data Analytics Lab                |
| MCSELAC224                   | Data Warehouse and Data Mining Lab    |
| MCSELAD224                   | Data Security and Access Control Lab  |

|            |                                           |
|------------|-------------------------------------------|
| MCSELAE224 | Web Analytics and Development Lab         |
| MCSELAF224 | Knowledge Discovery Lab                   |
| MCSELAG224 | Introduction to Deep Learning Lab         |
| MCSELAH224 | Pattern Recognition Lab                   |
| MCSELAI224 | Intrusion Detection Lab                   |
| MCSELAJ224 | Data Encryption & Compression Lab         |
| MCSELAK224 | Steganography & Digital Watermarking Lab  |
| MCSELAL224 | Information Theory & Coding Lab           |
| MCSELAM224 | Security Assessment and Risk Analysis Lab |
| MCSELAN224 | Secure Coding Lab                         |
| MCSELAO224 | Network Security Lab                      |

| Program Electives V |                                        |
|---------------------|----------------------------------------|
| MCSEDAA324          | Big Data Processing Frameworks         |
| MCSEDAB324          | Cloud Computing                        |
| MCSEDAC324          | Distributed Databases                  |
| MCSEDAD324          | Natural Language Processing            |
| MCSEDAE324          | Social Network Data Analytics          |
| MCSEDAF324          | GPU Computing                          |
| MCSEDAG324          | Web Search & Information Retrieval     |
| MCSEDAH324          | Software Defined Networks              |
| MCSEDAI324          | Blockchain Technology                  |
| LAB                 |                                        |
| MCSELAA324          | Big Data Processing Frameworks Lab     |
| MCSELAB324          | Cloud Computing Lab                    |
| MCSELAC324          | Distributed Databases Lab              |
| MCSELAD324          | Natural Language Processing Lab        |
| MCSELAE324          | Social Network Data Analytics Lab      |
| MCSELAF324          | GPU Computing Lab                      |
| MCSELAG324          | Web Search & Information Retrieval Lab |
| MCSELAH324          | Software Defined Networks Lab          |
| MCSELAI324          | Blockchain Technology Lab              |

| Open Electives |                                                           |
|----------------|-----------------------------------------------------------|
| MCSEOBA324     | Business Analytics                                        |
| MCSEOIS324     | Industrial Safety                                         |
| MCSEOOR324     | Operations Research                                       |
| MCSEOCE324     | Cost Management of Engineering Projects                   |
| MCSEOCM324     | Composite Materials                                       |
| MCSEOWE324     | Waste to Energy                                           |
| Audit Course 1 |                                                           |
| MCSEARP124     | English for Research Paper Writing                        |
| MCSEADM124     | Disaster Management                                       |
| MCSEATK124     | Sanskrit for Technical Knowledge                          |
| MCSEAVE124     | Value Education                                           |
| Audit Course 2 |                                                           |
| MCSEACI224     | Constitution of India                                     |
| MCSEAPS224     | Pedagogy Studies                                          |
| MCSEASM224     | Stress Management by Yoga                                 |
| MCSEAPD224     | Personality Development through Life Enlightenment Skills |


 A series of handwritten signatures and initials are visible at the bottom of the page, including 'A', 'A', 'F', 'V', 'B', 'B', 'M', 'S', and 'S'.

# 1<sup>st</sup> Semester

Subhankar S. Majhi (B.Tech)

| Course Title: Mathematical Foundations of Computer Science                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |               |   |              |   |               |                       |    |   |   |    |    |    |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---------------|---|--------------|---|---------------|-----------------------|----|---|---|----|----|----|--|--|--|
| Course Code: MCSECMF124                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |               |   |              |   |               | Examination Scheme    |    |   |   |    |    |    |  |  |  |
| Total Number of Lecture Hours: 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |               |   |              |   |               | External              | 72 |   |   |    |    |    |  |  |  |
| Lecture (L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4 | Practical (P) | 0 | Tutorial (T) | 0 | Total Credits | 0                     | 28 |   | 4 |    |    |    |  |  |  |
| <b>Course Objectives</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |               |   |              |   |               |                       |    |   |   |    |    |    |  |  |  |
| <ul style="list-style-type: none"> <li>To understand the mathematical fundamentals that support a variety of computer science courses, including data mining, network protocols, machine learning, and bioinformatics, and to develop a logical foundation for modern IT techniques like programming language design and concurrency.</li> <li>To provide a solid foundation in probability theory, statistical distributions, and limit theorems for uncertainty modelling in computational problems.</li> <li>To explore combinatorics, graph theory, and algebraic structures and their applications in networks, cryptography, and algorithm design.</li> </ul> |   |               |   |              |   |               |                       |    |   |   |    |    |    |  |  |  |
| Course Content                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   |               |   |              |   |               | No. of Teaching Hours |    |   |   |    |    |    |  |  |  |
| UNIT 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |               |   |              |   |               | 12 Hrs                |    |   |   |    |    |    |  |  |  |
| Probability mass functions (PMF), probability density functions (PDF), cumulative distribution functions (CDF). Parametric families of distributions: Binomial, Poisson, Normal, Exponential distributions. Expected value, variance, higher-order moments, conditional expectation. Law of Large Numbers, Central Limit Theorem, Markov's inequality, Chebyshev's inequality                                                                                                                                                                                                                                                                                       |   |               |   |              |   |               |                       |    |   |   |    |    |    |  |  |  |
| UNIT 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |               |   |              |   |               | 12 Hrs                |    |   |   |    |    |    |  |  |  |
| Random samples and sampling distributions. Methods of Moments and Maximum Likelihood Estimation (MLE). Hypothesis testing: Null and alternative hypotheses, Type I and Type II errors, p-values. Linear regression models: Simple and multiple regression. Classification problems: Binary and multiclass classification basics. Principal Component Analysis (PCA) for dimensionality reduction.                                                                                                                                                                                                                                                                   |   |               |   |              |   |               |                       |    |   |   |    |    |    |  |  |  |
| UNIT 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |               |   |              |   |               | 12 Hrs                |    |   |   |    |    |    |  |  |  |
| Permutations and combinations: With and without repetition. Pigeonhole principle, inclusion-exclusion principle. Graph theory fundamentals: Graph isomorphism, planar graphs, Kuratowski's theorem. Graph colouring, Hamiltonian circuits, Eulerian cycles. Trees and spanning trees, minimal spanning trees (Prim's and Kruskal's algorithms). Introduction to Groups, Rings, and Fields. Rings and Fields in cryptographic applications.                                                                                                                                                                                                                          |   |               |   |              |   |               |                       |    |   |   |    |    |    |  |  |  |
| UNIT 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |               |   |              |   |               | 14 Hrs                |    |   |   |    |    |    |  |  |  |
| Introduction to Markov chains: Transition matrices, classification of states, steady-state behaviour. Model assessment techniques: Cross-validation, metrics for model evaluation. Overfitting and regularization. Introduction to recent trends: Probabilistic modelling in bioinformatics, Stochastic models in distributed systems and network security, Soft computing using probabilistic and algebraic methods, Graph-based anomaly detection in cybersecurity                                                                                                                                                                                                |   |               |   |              |   |               |                       |    |   |   |    |    |    |  |  |  |
| <b>Books:</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   |               |   |              |   |               |                       |    |   |   |    |    |    |  |  |  |
| <ol style="list-style-type: none"> <li>Probability and Statistics with Reliability, Queuing, and Computer Science Applications by Kishor S. Trivedi, PHI Learning.</li> <li>M. Mitzenmacher and E. Upfal, Probability and Computing: Randomized Algorithms and Probabilistic Analysis, Cambridge University Press.</li> <li>Fundamentals of Probability and Statistics for Engineers by T.T. Soong, Wiley India,</li> <li>John Vince, Foundation Mathematics for Computer Science, Springer.</li> <li>Alan Tucker, Applied Combinatorics, Wiley.</li> </ol>                                                                                                         |   |               |   |              |   |               |                       |    |   |   |    |    |    |  |  |  |
| <b>Course Learning Outcomes</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |               |   |              |   |               |                       |    |   |   |    |    |    |  |  |  |
| CLO1: Apply probability and distribution concepts to real-world problems.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   |               |   |              |   |               |                       |    |   |   |    |    |    |  |  |  |
| CLO2: Perform statistical analysis, including estimation, hypothesis testing, and regression.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   |               |   |              |   |               |                       |    |   |   |    |    |    |  |  |  |
| CLO3: Use combinatorics, graph theory, and algebraic structures in algorithms and security.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |               |   |              |   |               |                       |    |   |   |    |    |    |  |  |  |
| CLO4: Analyse Markov chains, evaluate models, and explore applications in emerging fields.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |               |   |              |   |               |                       |    |   |   |    |    |    |  |  |  |
| <b>Level of CLO-PLO Mapping</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |               |   |              |   |               |                       |    |   |   |    |    |    |  |  |  |
| CLOs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   | PLOs          |   |              |   |               |                       |    |   |   |    |    |    |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   | 1             | 2 | 3            | 4 | 5             | 6                     | 7  | 8 | 9 | 10 | 11 | 12 |  |  |  |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   | 3             | 3 | 2            | 3 | 2             | -                     | -  | - | - | 1  | -  | -  |  |  |  |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   | 3             | 3 | 3            | 3 | 2             | -                     | -  | - | - | 1  | -  | -  |  |  |  |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   | 2             | 2 | 3            | 2 | 2             | 2                     | 1  | 2 | 2 | 2  | 2  | -  |  |  |  |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   | 3             | 3 | 2            | 3 | 2             | -                     | -  | - | - | 1  | -  | 2  |  |  |  |

| Course Title: Advanced Data Structures                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |               |   |   |              |   |                       |               |    |   |    |  |  |  |  |  |  |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---------------|---|---|--------------|---|-----------------------|---------------|----|---|----|--|--|--|--|--|--|--|--|--|--|--|
| Course Code: MCSECDS124                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   |               |   |   |              |   | Examination Scheme    |               |    |   |    |  |  |  |  |  |  |  |  |  |  |  |
| Total Number of Lecture Hours: 48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   |               |   |   |              |   | External              |               | 72 |   |    |  |  |  |  |  |  |  |  |  |  |  |
| Lecture (L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   | Practical (P) |   | 0 | Tutorial (T) |   | 0                     | Total Credits |    | 4 |    |  |  |  |  |  |  |  |  |  |  |  |
| <b>Course Objectives:</b> The aim of this course is to provide a comprehensive understanding of basic data structures including their representations, operations, and applications. Implement and apply advanced data structures like skip lists, AVL trees, B-trees etc. To familiarize students with hashing, graph traversals, and dynamic programming techniques. Apply various data structures and algorithms to real-world problems such as text processing, pattern matching, and compression algorithms. |   |               |   |   |              |   |                       |               |    |   |    |  |  |  |  |  |  |  |  |  |  |  |
| Course Content                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |               |   |   |              |   | No. of Teaching Hours |               |    |   |    |  |  |  |  |  |  |  |  |  |  |  |
| UNIT 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |               |   |   |              |   | 12 Hrs                |               |    |   |    |  |  |  |  |  |  |  |  |  |  |  |
| Basic concepts overview: Stack, Representation of stack in memory, Operations on Stacks, Implementation of Stack using arrays and linked list, Applications of stacks.                                                                                                                                                                                                                                                                                                                                            |   |               |   |   |              |   |                       |               |    |   |    |  |  |  |  |  |  |  |  |  |  |  |
| Queues, Representation of Queue in Memory, Operations on Queue, Implementation of Queue using arrays and linked list, Queues, Implementation using Arrays and Linked list.                                                                                                                                                                                                                                                                                                                                        |   |               |   |   |              |   |                       |               |    |   |    |  |  |  |  |  |  |  |  |  |  |  |
| Skip Lists: Need for Randomizing Data Structures and Algorithms, Search and Update Operations on Skip Lists, Probabilistic Analysis of Skip Lists, Deterministic Skip Lists.                                                                                                                                                                                                                                                                                                                                      |   |               |   |   |              |   |                       |               |    |   |    |  |  |  |  |  |  |  |  |  |  |  |
| UNIT 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |               |   |   |              |   | 12 Hrs                |               |    |   |    |  |  |  |  |  |  |  |  |  |  |  |
| Trees: Definitions, terminologies and properties, Binary tree representation, traversals and applications, Threaded binary trees, Binary Search Trees, AVL Trees, M-way Search Trees, B-trees, B*-trees.                                                                                                                                                                                                                                                                                                          |   |               |   |   |              |   |                       |               |    |   |    |  |  |  |  |  |  |  |  |  |  |  |
| Graphs: Terminology, Graph representations, Traversal Techniques, Operations on Graphs, Applications of Graphs Trees: Binary Search Trees, AVL Trees, Red Black Trees, 2-3 Trees, B-Trees, Splay Trees.                                                                                                                                                                                                                                                                                                           |   |               |   |   |              |   |                       |               |    |   |    |  |  |  |  |  |  |  |  |  |  |  |
| UNIT 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |               |   |   |              |   | 12 Hrs                |               |    |   |    |  |  |  |  |  |  |  |  |  |  |  |
| Dictionaries: Definition, Dictionary Abstract Data Type, Implementation of Dictionaries.                                                                                                                                                                                                                                                                                                                                                                                                                          |   |               |   |   |              |   |                       |               |    |   |    |  |  |  |  |  |  |  |  |  |  |  |
| Hashing: Review of Hashing, Hash Function, Collision Resolution Techniques in Hashing, Separate Chaining, Open Addressing, Linear Probing, Quadratic Probing, Double Hashing, Rehashing, Extendible Hashing.                                                                                                                                                                                                                                                                                                      |   |               |   |   |              |   |                       |               |    |   |    |  |  |  |  |  |  |  |  |  |  |  |
| UNIT 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |               |   |   |              |   | 12 Hrs                |               |    |   |    |  |  |  |  |  |  |  |  |  |  |  |
| Text Processing: String Operations, Brute-Force Pattern Matching, The Boyer-Moore Algorithm, The Knuth-Morris-Pratt Algorithm, Standard Tries, Compressed Tries, Suffix Tries, The Huffman Coding Algorithm, The Longest Common Subsequence Problem (LCS), Applying Dynamic Programming to the LCS Problem.                                                                                                                                                                                                       |   |               |   |   |              |   |                       |               |    |   |    |  |  |  |  |  |  |  |  |  |  |  |
| <b>Recommended Books:</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |               |   |   |              |   |                       |               |    |   |    |  |  |  |  |  |  |  |  |  |  |  |
| 1. <i>Mark Allen Weiss, Data Structures &amp; Algorithm Analysis in C++, 2nd Edition, Pearson, 2004.</i>                                                                                                                                                                                                                                                                                                                                                                                                          |   |               |   |   |              |   |                       |               |    |   |    |  |  |  |  |  |  |  |  |  |  |  |
| 2. <i>M T Goodrich, Roberto Tamassia, Algorithm Design, John Wiley, 2002.</i>                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |               |   |   |              |   |                       |               |    |   |    |  |  |  |  |  |  |  |  |  |  |  |
| 3. <i>A. M. Tenenbaum, Y. Langsam, and M. J. Augenstein, Data Structures Using C and C++, Prentice Hall, 2/e, 1995</i>                                                                                                                                                                                                                                                                                                                                                                                            |   |               |   |   |              |   |                       |               |    |   |    |  |  |  |  |  |  |  |  |  |  |  |
| <b>Course Learning Outcomes:</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |               |   |   |              |   |                       |               |    |   |    |  |  |  |  |  |  |  |  |  |  |  |
| 1. Understand and implement linear data structures such as stacks, queues, and skip lists, and analyze their operations and memory representations.                                                                                                                                                                                                                                                                                                                                                               |   |               |   |   |              |   |                       |               |    |   |    |  |  |  |  |  |  |  |  |  |  |  |
| 2. Apply various tree and graph structures (binary trees, AVL trees, B-trees, Red-Black trees) and perform efficient traversals, insertions, deletions, and searches.                                                                                                                                                                                                                                                                                                                                             |   |               |   |   |              |   |                       |               |    |   |    |  |  |  |  |  |  |  |  |  |  |  |
| 3. Analyse and Optimize Hashing Techniques: Students will be able to apply different hashing techniques (e.g., separate chaining, linear probing, double hashing) to resolve collisions and optimize dictionary operations, while understanding their time and space complexities.                                                                                                                                                                                                                                |   |               |   |   |              |   |                       |               |    |   |    |  |  |  |  |  |  |  |  |  |  |  |
| 4. Apply Advanced Algorithms: Students will be able to apply advanced algorithms such as the Boyer-Moore and Knuth-Morris-Pratt pattern matching algorithms, Huffman coding, and the Longest Common Subsequence (LCS) problem, along with understanding their efficiency.                                                                                                                                                                                                                                         |   |               |   |   |              |   |                       |               |    |   |    |  |  |  |  |  |  |  |  |  |  |  |
| <b>Level of CLO-PLO Mapping</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |               |   |   |              |   |                       |               |    |   |    |  |  |  |  |  |  |  |  |  |  |  |
| CLOs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   | PLOs          |   |   |              |   |                       |               |    |   |    |  |  |  |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   | 1             | 2 | 3 | 4            | 5 | 6                     | 7             | 8  | 9 | 10 |  |  |  |  |  |  |  |  |  |  |  |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3 | 3             | 2 | 2 | 1            | 1 | -                     | 1             | 1  | 2 | 1  |  |  |  |  |  |  |  |  |  |  |  |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3 | 3             | 2 | 2 | 2            | - | -                     | 1             | 1  | 2 | 1  |  |  |  |  |  |  |  |  |  |  |  |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3 | 3             | 2 | 2 | 2            | 1 | -                     | 1             | 2  | 2 | -  |  |  |  |  |  |  |  |  |  |  |  |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3 | 3             | 2 | 2 | 2            | 1 | 1                     | 1             | 1  | 2 | 2  |  |  |  |  |  |  |  |  |  |  |  |

fallen, A. S. 11. 1. 1911. 8. 1. 1911. S. 1. 1911. 8. 1. 1911.

| Course Title: Advanced Data Structures Lab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |   |               |  |   |              |                    |   |               |  |   |  |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|---|---------------|--|---|--------------|--------------------|---|---------------|--|---|--|--|--|--|--|--|
| Course Code: MCSELDS124                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |   |               |  |   |              | Examination Scheme |   |               |  |   |  |  |  |  |  |  |
| Total Number of Lecture Hours: 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |   |               |  |   |              | External           |   | 36            |  |   |  |  |  |  |  |  |
| Lecture (L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  | 0 | Practical (P) |  | 4 | Tutorial (T) |                    | 0 | Total Credits |  | 2 |  |  |  |  |  |  |
| <b>Course Objectives</b><br>To introduce and implement the basic and advanced data structures. Application of various data structures and algorithms in real-world problems such as text processing, pattern matching, and compression algorithms.                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |   |               |  |   |              |                    |   |               |  |   |  |  |  |  |  |  |
| <b>List of Experiments</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |   |               |  |   |              |                    |   |               |  |   |  |  |  |  |  |  |
| <ol style="list-style-type: none"> <li>1. Stack Implementation</li> <li>2. Queue Implementation</li> <li>3. Skip List Operations</li> <li>4. Dictionary Implementation</li> <li>5. Hashing Techniques</li> <li>6. Binary Tree Operations</li> <li>7. Binary Search Tree (BST) Operations</li> <li>8. AVL Tree Operations</li> <li>9. Graph Representation and Traversal</li> <li>10. B-trees and B Trees*</li> <li>11. Pattern Matching Algorithms</li> <li>12. Tries and Compressed Tries</li> <li>13. Huffman Coding Algorithm</li> <li>14. Longest Common Subsequence (LCS)</li> <li>15. Graph Algorithms (Advanced)</li> <li>16. Dynamic Programming (Advanced Algorithms)</li> </ol> |  |   |               |  |   |              |                    |   |               |  |   |  |  |  |  |  |  |
| <i>*This is only a suggested list of experiments/simulations. The instructor is encouraged to familiarize students with additional relevant exercises.</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |   |               |  |   |              |                    |   |               |  |   |  |  |  |  |  |  |

#### Course Learning Outcomes:

1. To implement and manipulate fundamental data structures such as stacks, queues, trees, and graphs using arrays and linked lists, and perform standard operations like insertion, deletion, and traversal.
2. Students will demonstrate the ability to implement and apply advanced data structures such as AVL trees, B-trees, and skip lists, and solve complex traversal and path finding problems in graphs.
3. Implement various hashing techniques (e.g., linear probing, separate chaining) and implement dictionaries for efficient data access & storage, analyzing their performance in terms of time & space.
4. Develop Solutions Using Text Algorithms and Dynamic Programming Students will be able to apply pattern matching algorithms (e.g., KMP, Boyer-Moore), Huffman coding, and dynamic programming-based solutions (like LCS), understanding their real-world applications and efficiency.

#### Level of CLO-PLO Mapping

| CLOs | PLOs |   |   |   |   |   |   |   |   |    |    |    |
|------|------|---|---|---|---|---|---|---|---|----|----|----|
|      | 1    | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| 1    | 3    | 3 | 2 | 2 | 2 | - | - | - | 1 | 1  | -  | 2  |
| 2    | 3    | 3 | 3 | 2 | 3 | 1 | - | - | 1 | 1  | 1  | 2  |
| 3    | 3    | 3 | 2 | 2 | 2 | 1 | - | 1 | 1 | 1  | 1  | 2  |
| 4    | 3    | 2 | 3 | 2 | 2 | - | - | 1 | 1 | 1  | -  | 3  |


 (10)

## 2<sup>nd</sup> Semester

Latin A & B - Math - Geod. ~~History~~ - Chem. etc.

| Course Title: Advanced Algorithms                                                                                                                                                                                                                                                                                             |      |               |   |              |   |               |                       |   |    |    |    |    |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------------|---|--------------|---|---------------|-----------------------|---|----|----|----|----|--|--|--|--|
| Course Code: MCSECAL224                                                                                                                                                                                                                                                                                                       |      |               |   |              |   |               | Examination Scheme    |   |    |    |    |    |  |  |  |  |
| Total Number of Lecture Hours: 40                                                                                                                                                                                                                                                                                             |      |               |   |              |   |               | External              |   | 72 |    |    |    |  |  |  |  |
| Lecture (L)                                                                                                                                                                                                                                                                                                                   | 4    | Practical (P) | 0 | Tutorial (T) | 0 | Total Credits | 4                     |   |    |    |    |    |  |  |  |  |
| <b>Course Objectives</b>                                                                                                                                                                                                                                                                                                      |      |               |   |              |   |               |                       |   |    |    |    |    |  |  |  |  |
| To develop the ability to design, analyze, and implement advanced algorithms for complex problems. Students will learn efficient techniques such as greedy methods, dynamic programming, graph algorithms, and linear programming, along with understanding NP-completeness and advanced computational models.                |      |               |   |              |   |               |                       |   |    |    |    |    |  |  |  |  |
| Course Content                                                                                                                                                                                                                                                                                                                |      |               |   |              |   |               | No. of Teaching Hours |   |    |    |    |    |  |  |  |  |
| UNIT 1                                                                                                                                                                                                                                                                                                                        |      |               |   |              |   |               | 10 Hrs                |   |    |    |    |    |  |  |  |  |
| Sorting: Review of various sorting algorithms, topological sorting.                                                                                                                                                                                                                                                           |      |               |   |              |   |               |                       |   |    |    |    |    |  |  |  |  |
| Graph: Definitions and Elementary Algorithms: Shortest path by BFS, shortest path in edge-weighted case (Dijkstra's), depth-first search and computation of strongly connected components, emphasis on correctness proof of the algorithm and time/space analysis, example of amortized analysis.                             |      |               |   |              |   |               |                       |   |    |    |    |    |  |  |  |  |
| UNIT 2                                                                                                                                                                                                                                                                                                                        |      |               |   |              |   |               | 10 Hrs                |   |    |    |    |    |  |  |  |  |
| Introduction to greedy paradigm, algorithm to compute a maximum weight maximal independent set.                                                                                                                                                                                                                               |      |               |   |              |   |               |                       |   |    |    |    |    |  |  |  |  |
| Application to MST. Graph Matching: Algorithm to compute maximum matching. Characterization of maximum matching by augmenting paths, Edmond's Blossom algorithm to compute augmenting path. Flow Networks: Maxflow-mincut theorem, Ford-Fulkerson Method to compute maximum flow, Edmond-Karp maximum-flow algorithm.         |      |               |   |              |   |               |                       |   |    |    |    |    |  |  |  |  |
| UNIT 3                                                                                                                                                                                                                                                                                                                        |      |               |   |              |   |               | 10 Hrs                |   |    |    |    |    |  |  |  |  |
| Shortest Path in Graphs: Floyd-Warshall algorithm and introduction to dynamic programming paradigm.                                                                                                                                                                                                                           |      |               |   |              |   |               |                       |   |    |    |    |    |  |  |  |  |
| More examples of dynamic programming. Modulo Representation of integers/polynomials: Chinese Remainder Theorem, Conversion between base-representation and modulo representation. Schonhage-Strassen Integer Multiplication algorithm.                                                                                        |      |               |   |              |   |               |                       |   |    |    |    |    |  |  |  |  |
| UNIT 4                                                                                                                                                                                                                                                                                                                        |      |               |   |              |   |               | 10 Hrs                |   |    |    |    |    |  |  |  |  |
| Linear Programming: Geometry of the feasibility region and Simplex algorithm NP-completeness: Examples, proof of NP-hardness and NP completeness. One or more of the following topics based on time and interest Approximation algorithms, Randomized Algorithms, Interior Point Method, Advanced Number Theoretic Algorithm. |      |               |   |              |   |               |                       |   |    |    |    |    |  |  |  |  |
| <b>Recommended Books:</b>                                                                                                                                                                                                                                                                                                     |      |               |   |              |   |               |                       |   |    |    |    |    |  |  |  |  |
| 1. <i>Introduction to Algorithms</i> by Cormen, Leiserson, Rivest, Stein.                                                                                                                                                                                                                                                     |      |               |   |              |   |               |                       |   |    |    |    |    |  |  |  |  |
| 2. <i>The Design and Analysis of Computer Algorithms</i> by Aho, Hopcroft, Ullman.                                                                                                                                                                                                                                            |      |               |   |              |   |               |                       |   |    |    |    |    |  |  |  |  |
| 3. <i>Algorithm Design</i> by Kleinberg and Tardos.                                                                                                                                                                                                                                                                           |      |               |   |              |   |               |                       |   |    |    |    |    |  |  |  |  |
| 4. <i>H. S. Wilf, Algorithms and complexity</i> , Prentice Hall.                                                                                                                                                                                                                                                              |      |               |   |              |   |               |                       |   |    |    |    |    |  |  |  |  |
| <b>Course Learning Outcomes:</b>                                                                                                                                                                                                                                                                                              |      |               |   |              |   |               |                       |   |    |    |    |    |  |  |  |  |
| 1. Analyze and apply advanced sorting and graph algorithms with correctness proofs and time/space complexity analysis.                                                                                                                                                                                                        |      |               |   |              |   |               |                       |   |    |    |    |    |  |  |  |  |
| 2. Apply greedy algorithms and graph matching techniques to solve optimization problems.                                                                                                                                                                                                                                      |      |               |   |              |   |               |                       |   |    |    |    |    |  |  |  |  |
| 3. Solve complex problems using dynamic programming, including shortest paths and integer multiplication.                                                                                                                                                                                                                     |      |               |   |              |   |               |                       |   |    |    |    |    |  |  |  |  |
| 4. Apply Linear Programming techniques and understand their geometric interpretations and algorithmic implementations                                                                                                                                                                                                         |      |               |   |              |   |               |                       |   |    |    |    |    |  |  |  |  |
| <b>Level of CLO-PLO Mapping</b>                                                                                                                                                                                                                                                                                               |      |               |   |              |   |               |                       |   |    |    |    |    |  |  |  |  |
| CLOs                                                                                                                                                                                                                                                                                                                          | PLOs |               |   |              |   |               |                       |   |    |    |    |    |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                               | 1    | 2             | 3 | 4            | 5 | 6             | 7                     | 8 | 9  | 10 | 11 | 12 |  |  |  |  |
| 1                                                                                                                                                                                                                                                                                                                             | 3    | 3             | 3 | 2            | 3 | 2             | 2                     | 1 | 2  | 1  | 1  | 2  |  |  |  |  |
| 2                                                                                                                                                                                                                                                                                                                             | 3    | 3             | 3 | 2            | 3 | 2             | 2                     | 1 | 2  | 1  | 1  | 2  |  |  |  |  |
| 3                                                                                                                                                                                                                                                                                                                             | 3    | 3             | 3 | 2            | 3 | 2             | 2                     | 1 | 2  | 1  | 1  | 2  |  |  |  |  |
| 4                                                                                                                                                                                                                                                                                                                             | 3    | 3             | 3 | 2            | 3 | 2             | 2                     | 1 | 2  | 1  | 1  | 2  |  |  |  |  |

| Course Title: Soft Computing      |   |               |   |              |  |   |                    |    |   |  |
|-----------------------------------|---|---------------|---|--------------|--|---|--------------------|----|---|--|
| Course Code: MCSECSC224           |   |               |   |              |  |   | Examination Scheme |    |   |  |
| Total Number of Lecture Hours: 56 |   |               |   |              |  |   | External           | 72 |   |  |
| Lecture (L)                       | 4 | Practical (P) | 0 | Tutorial (T) |  | 0 | Total Credits      |    | 4 |  |

#### Course Objectives:

- To introduce soft computing concepts & techniques & foster their abilities in designing appropriate technique for a given scenario.
- To implement soft computing based solutions for real-world problems.
- To give students knowledge of non-traditional technologies and fundamentals of artificial neural networks, fuzzy sets, fuzzy logic, genetic algorithms.
- To provide students a hand-on experience on MATLAB/Python to implement various strategies.

| Course Content                                                                                                                                                                                                                                                                                                                                                                                                                               | No. of Teaching Hours |   |   |   |   |   |   |   |   |    |    |    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|---|---|---|---|---|---|---|---|----|----|----|
| <b>UNIT 1</b>                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>14 Hrs</b>         |   |   |   |   |   |   |   |   |    |    |    |
| <b>SOFT COMPUTING and FUZZY LOGIC:</b> Soft Computing Constituents, Fuzzy Sets, Operations on Fuzzy Sets, Fuzzy Relations, Membership Functions: Fuzzy Rules and Fuzzy Reasoning, Fuzzy Inference Systems, Fuzzy Expert Systems, Fuzzy Decision Making.                                                                                                                                                                                      |                       |   |   |   |   |   |   |   |   |    |    |    |
| <b>UNIT 2</b>                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>14 Hrs</b>         |   |   |   |   |   |   |   |   |    |    |    |
| <b>NEURAL NETWORKS:</b> Machine Learning Using Neural Network, Adaptive Networks, Feed forward Networks, Supervised Learning Neural Networks, Radial Basis Function Networks, Unsupervised Learning Neural Networks,                                                                                                                                                                                                                         |                       |   |   |   |   |   |   |   |   |    |    |    |
| <b>UNIT 3</b>                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>14 Hrs</b>         |   |   |   |   |   |   |   |   |    |    |    |
| <b>DEEP LEARNING and GENETIC ALGORITHMS:</b> Recent Trends in deep learning, various classifiers. Introduction to Genetic Algorithms (GA), Applications of GA in Machine Learning. Implementation of recently proposed soft computing techniques..                                                                                                                                                                                           |                       |   |   |   |   |   |   |   |   |    |    |    |
| <b>UNIT 4</b>                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>14 Hrs</b>         |   |   |   |   |   |   |   |   |    |    |    |
| <b>Matlab/Python Lib:</b> Introduction to Matlab/Python, Arrays and array operations, Functions and Files, Study of machine learning/soft computing toolbox/libraries, Simple implementation of machine learning/soft computing techniques.                                                                                                                                                                                                  |                       |   |   |   |   |   |   |   |   |    |    |    |
| <b>Recommended Books:</b>                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |   |   |   |   |   |   |   |   |    |    |    |
| 1. <i>Jyh-Shing Roger Jang, Chuen Tsai Sun, Eiji Mizutani, Neuro:Fuzzy and Soft Computing</i> , Prentice Hall of India, 2003.                                                                                                                                                                                                                                                                                                                |                       |   |   |   |   |   |   |   |   |    |    |    |
| 2. <i>George J. Klir and Bo Yuan, Fuzzy Sets and Fuzzy Logic: Theory and Applications</i> , Prentice Hall, 1995.                                                                                                                                                                                                                                                                                                                             |                       |   |   |   |   |   |   |   |   |    |    |    |
| 3. <i>MATLAB Toolkit Manual</i>                                                                                                                                                                                                                                                                                                                                                                                                              |                       |   |   |   |   |   |   |   |   |    |    |    |
| <b>Course Learning Outcomes:</b>                                                                                                                                                                                                                                                                                                                                                                                                             |                       |   |   |   |   |   |   |   |   |    |    |    |
| After completion of course, students would be able to:                                                                                                                                                                                                                                                                                                                                                                                       |                       |   |   |   |   |   |   |   |   |    |    |    |
| <ul style="list-style-type: none"> <li>• Identify and describe soft computing techniques and their roles in building intelligent machines</li> <li>• Apply fuzzy logic and reasoning to handle uncertainty and solve various engineering problems.</li> <li>• Apply genetic algorithms to combinatorial optimization problems.</li> <li>• Evaluate and compare solutions by various soft computing approaches for a given problem</li> </ul> |                       |   |   |   |   |   |   |   |   |    |    |    |
| <b>Level of CLO-PLO Mapping</b>                                                                                                                                                                                                                                                                                                                                                                                                              |                       |   |   |   |   |   |   |   |   |    |    |    |
| CLOs                                                                                                                                                                                                                                                                                                                                                                                                                                         | PLOs                  |   |   |   |   |   |   |   |   |    |    |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                     | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3                     | 2 | 1 | 1 | 1 | 1 | - | 1 | - | 1  | -  | 2  |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3                     | 3 | 2 | 2 | 2 | 1 | - | 1 | 1 | 1  | -  | 2  |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3                     | 2 | 3 | 2 | 3 | 1 | - | 1 | 2 | 2  | 2  | 2  |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3                     | 2 | 2 | 2 | 3 | 1 | - | 1 | 1 | 2  | 1  | 3  |

*Submitted At W.M. Deemed to be University, Sector 12, Chandigarh*

| Course Title: Mini Project with Seminar                                                                                                                                                                                                                                                                                                                                                                                           |      |               |   |              |   |   |                    |    |   |    |    |    |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------------|---|--------------|---|---|--------------------|----|---|----|----|----|--|--|--|
| Course Code: MCSECPS224                                                                                                                                                                                                                                                                                                                                                                                                           |      |               |   |              |   |   | Examination Scheme |    |   |    |    |    |  |  |  |
| Total Number of Lecture Hours: 30                                                                                                                                                                                                                                                                                                                                                                                                 |      |               |   |              |   |   | External           | 36 |   |    |    |    |  |  |  |
| Lecture (L)                                                                                                                                                                                                                                                                                                                                                                                                                       | 0    | Practical (P) | 4 | Tutorial (T) |   | 0 | Total Credits      | 2  |   |    |    |    |  |  |  |
| <b>Course Objectives</b>                                                                                                                                                                                                                                                                                                                                                                                                          |      |               |   |              |   |   |                    |    |   |    |    |    |  |  |  |
| <ol style="list-style-type: none"> <li>1. To develop technical presentation and research communication skills.</li> <li>2. To enhance the ability to review literature and identify relevant research areas.</li> <li>3. To design and implement a mini project addressing a real-world or research-based problem.</li> <li>4. To encourage innovation and application of theoretical knowledge to practical problems.</li> </ol> |      |               |   |              |   |   |                    |    |   |    |    |    |  |  |  |
| <b>Description</b>                                                                                                                                                                                                                                                                                                                                                                                                                |      |               |   |              |   |   |                    |    |   |    |    |    |  |  |  |
| <b>Literature Survey &amp; Problem Identification</b>                                                                                                                                                                                                                                                                                                                                                                             |      |               |   |              |   |   |                    |    |   |    |    |    |  |  |  |
| Identifying a domain of interest<br>Surveying recent research papers, patents, and open problems<br>Defining scope and significance of the problem<br>Framing project objectives and deliverables                                                                                                                                                                                                                                 |      |               |   |              |   |   |                    |    |   |    |    |    |  |  |  |
| <b>Design and Implementation</b>                                                                                                                                                                                                                                                                                                                                                                                                  |      |               |   |              |   |   |                    |    |   |    |    |    |  |  |  |
| System architecture/design models<br>Choice of tools, algorithms, datasets, or simulations<br>Implementation phases: coding, testing, modelling<br>Iterative development and testing strategies                                                                                                                                                                                                                                   |      |               |   |              |   |   |                    |    |   |    |    |    |  |  |  |
| <b>Documentation &amp; Report Writing</b>                                                                                                                                                                                                                                                                                                                                                                                         |      |               |   |              |   |   |                    |    |   |    |    |    |  |  |  |
| Technical writing standards and structure<br>Preparation of interim and final reports<br>Citing references (IEEE/APA style)<br>Plagiarism checking and ethics in research                                                                                                                                                                                                                                                         |      |               |   |              |   |   |                    |    |   |    |    |    |  |  |  |
| <b>Seminar &amp; Presentation</b>                                                                                                                                                                                                                                                                                                                                                                                                 |      |               |   |              |   |   |                    |    |   |    |    |    |  |  |  |
| Preparing slides and poster presentations<br>Verbal and visual communication skills<br>Feedback-based refinement<br>Final seminar and viva-voce                                                                                                                                                                                                                                                                                   |      |               |   |              |   |   |                    |    |   |    |    |    |  |  |  |
| <b>Course Learning Outcomes:</b> By the end of this course, students will be able to:                                                                                                                                                                                                                                                                                                                                             |      |               |   |              |   |   |                    |    |   |    |    |    |  |  |  |
| <ol style="list-style-type: none"> <li>1. Identify and articulate a research problem through comprehensive literature review.</li> <li>2. Demonstrate the ability to design, model, or simulate a technical solution.</li> <li>3. Present technical content effectively in oral and written form.</li> <li>4. Collaborate in a team environment to complete a research-oriented mini project.</li> </ol>                          |      |               |   |              |   |   |                    |    |   |    |    |    |  |  |  |
| <b>Level of CLO-PLO Mapping</b>                                                                                                                                                                                                                                                                                                                                                                                                   |      |               |   |              |   |   |                    |    |   |    |    |    |  |  |  |
| CLOs                                                                                                                                                                                                                                                                                                                                                                                                                              | PLOs |               |   |              |   |   |                    |    |   |    |    |    |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1    | 2             | 3 | 4            | 5 | 6 | 7                  | 8  | 9 | 10 | 11 | 12 |  |  |  |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3    | 3             | 2 | 2            | 1 | 1 | 1                  | 1  | 2 | 2  | 2  | 3  |  |  |  |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3    | 2             | 3 | 2            | 3 | 0 | 1                  | 1  | 2 | 2  | 2  | 2  |  |  |  |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2    | 1             | 1 | 1            | 1 | 0 | 0                  | 0  | 1 | 3  | 3  | 2  |  |  |  |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2    | 2             | 2 | 2            | 2 | 1 | 1                  | 1  | 3 | 3  | -  | -  |  |  |  |

| Course Title: Advanced Algorithms Lab                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                      |               |   |              |   |   |               |                    |    |    |    |    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|---|--------------|---|---|---------------|--------------------|----|----|----|----|--|--|--|--|--|--|--|--|--|--|--|--|--|--|
| Course Code: MCSELAL224                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                      |               |   |              |   |   |               | Examination Scheme |    |    |    |    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Total Number of Lecture Hours: 30                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                      |               |   |              |   |   |               | External           | 36 |    |    |    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Lecture (L)                                                                                                                                                                                                                                                                                                | 0                                                                                                                                                                                                                                                                    | Practical (P) | 4 | Tutorial (T) |   | 0 | Total Credits |                    | 2  |    |    |    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| <b>Course Objectives</b>                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                      |               |   |              |   |   |               |                    |    |    |    |    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| <p>The aim of the Lab is to develop the ability to design, implement, and analyze advanced algorithmic techniques for solving complex computational problems, including graph algorithms, greedy strategies, dynamic programming, number-theoretic algorithms, and NP-complete problem approximations.</p> |                                                                                                                                                                                                                                                                      |               |   |              |   |   |               |                    |    |    |    |    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| <b>List of Experiments</b>                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                      |               |   |              |   |   |               |                    |    |    |    |    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1.                                                                                                                                                                                                                                                                                                         | Implement and analyze basic sorting algorithms (e.g., Merge Sort, Quick Sort, Heap Sort) with time and space complexity evaluation.                                                                                                                                  |               |   |              |   |   |               |                    |    |    |    |    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2.                                                                                                                                                                                                                                                                                                         | Implement BFS & DFS for traversal and shortest path computation in unweighted graphs.                                                                                                                                                                                |               |   |              |   |   |               |                    |    |    |    |    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3.                                                                                                                                                                                                                                                                                                         | Implement Dijkstra's algorithm for finding the shortest paths in weighted graphs.                                                                                                                                                                                    |               |   |              |   |   |               |                    |    |    |    |    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 4.                                                                                                                                                                                                                                                                                                         | Implement a Greedy algorithm for MST using Kruskal's and Prim's algorithms.                                                                                                                                                                                          |               |   |              |   |   |               |                    |    |    |    |    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 5.                                                                                                                                                                                                                                                                                                         | Implement graph matching algorithms (e.g., basic augmenting paths and Edmond's Blossom Algorithm for maximum matching).                                                                                                                                              |               |   |              |   |   |               |                    |    |    |    |    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 6.                                                                                                                                                                                                                                                                                                         | Solve the Maximum Flow Problem using Ford-Fulkerson Method and Edmond-Karp Algorithm.                                                                                                                                                                                |               |   |              |   |   |               |                    |    |    |    |    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 7.                                                                                                                                                                                                                                                                                                         | Implement Floyd-Warshall algorithm for finding all-pairs shortest paths.                                                                                                                                                                                             |               |   |              |   |   |               |                    |    |    |    |    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 8.                                                                                                                                                                                                                                                                                                         | Apply Chinese Remainder Theorem (CRT) for solving modular arithmetic problems.                                                                                                                                                                                       |               |   |              |   |   |               |                    |    |    |    |    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 9.                                                                                                                                                                                                                                                                                                         | Implement efficient Integer Multiplication using Schonhage-Strassen algorithm (basic version or an optimized large number multiplication).                                                                                                                           |               |   |              |   |   |               |                    |    |    |    |    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 10.                                                                                                                                                                                                                                                                                                        | Solve Linear Programming problems using the Simplex Method manually and/or using available libraries like SciPy.optimize.linprog.                                                                                                                                    |               |   |              |   |   |               |                    |    |    |    |    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 11.                                                                                                                                                                                                                                                                                                        | Study and simulate an NP-complete problem (e.g., Vertex Cover or Subset Sum problem)                                                                                                                                                                                 |               |   |              |   |   |               |                    |    |    |    |    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 12.                                                                                                                                                                                                                                                                                                        | Implement an Approx. Algorithm for a classical NP-hard problem (e.g., Vertex Cover, TSP).                                                                                                                                                                            |               |   |              |   |   |               |                    |    |    |    |    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 13.                                                                                                                                                                                                                                                                                                        | Implement a basic Randomized Algorithm (e.g., Randomized QuickSort or Randomized Selection Algorithm).                                                                                                                                                               |               |   |              |   |   |               |                    |    |    |    |    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| <p><i>*This is only a suggested list of experiments/simulations. The instructor is encouraged to familiarize students with additional relevant exercises.</i></p>                                                                                                                                          |                                                                                                                                                                                                                                                                      |               |   |              |   |   |               |                    |    |    |    |    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| <b>Course Learning Outcomes:</b>                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                      |               |   |              |   |   |               |                    |    |    |    |    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1.                                                                                                                                                                                                                                                                                                         | Implement sorting algorithms (Merge, Quick, Heap), graph algorithms (BFS, DFS, Dijkstra), and perform time-space complexity analysis.                                                                                                                                |               |   |              |   |   |               |                    |    |    |    |    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2.                                                                                                                                                                                                                                                                                                         | Implementation of solutions for problems like MST (Kruskal's/Prim's), graph matching, maximum flow (Ford-Fulkerson, Edmond-Karp), and shortest paths (Floyd-Warshall).                                                                                               |               |   |              |   |   |               |                    |    |    |    |    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3.                                                                                                                                                                                                                                                                                                         | Solve modular arithmetic and number-theoretic problems using efficient algorithms, apply Chinese Remainder Theorem, perform efficient integer multiplication (Schonhage-Strassen), and solve linear programming problems using Simplex Method.                       |               |   |              |   |   |               |                    |    |    |    |    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 4.                                                                                                                                                                                                                                                                                                         | Explore and simulate NP-complete problems, approximation, and randomized algorithms. Students will investigate NP-hard problems (like Vertex Cover), implement approximation and randomized algorithms, and evaluate their computational complexity and performance. |               |   |              |   |   |               |                    |    |    |    |    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| <b>Level of CLO-PLO Mapping</b>                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                      |               |   |              |   |   |               |                    |    |    |    |    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| <b>CLOs</b>                                                                                                                                                                                                                                                                                                | <b>PLOs</b>                                                                                                                                                                                                                                                          |               |   |              |   |   |               |                    |    |    |    |    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                            | 1                                                                                                                                                                                                                                                                    | 2             | 3 | 4            | 5 | 6 | 7             | 8                  | 9  | 10 | 11 | 12 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1                                                                                                                                                                                                                                                                                                          | 3                                                                                                                                                                                                                                                                    | 3             | 2 | 2            | 2 | - | -             | -                  | 1  | 1  | -  | 2  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2                                                                                                                                                                                                                                                                                                          | 3                                                                                                                                                                                                                                                                    | 3             | 3 | 2            | 2 | - | -             | -                  | 1  | 1  | -  | 2  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3                                                                                                                                                                                                                                                                                                          | 3                                                                                                                                                                                                                                                                    | 3             | 2 | 2            | 2 | 1 | -             | 1                  | -  | 1  | -  | 3  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 4                                                                                                                                                                                                                                                                                                          | 3                                                                                                                                                                                                                                                                    | 3             | 2 | 2            | 1 | - | -             | -                  | 1  | 1  | 1  | 3  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

## 3<sup>rd</sup> Semester

falling A<sup>2</sup> B<sup>1</sup> C<sup>1</sup> D<sup>1</sup> E<sup>1</sup> F<sup>1</sup> G<sup>1</sup> H<sup>1</sup> I<sup>1</sup> J<sup>1</sup> K<sup>1</sup> L<sup>1</sup> M<sup>1</sup> N<sup>1</sup> O<sup>1</sup> P<sup>1</sup> Q<sup>1</sup> R<sup>1</sup> S<sup>1</sup> T<sup>1</sup> U<sup>1</sup> V<sup>1</sup> W<sup>1</sup> X<sup>1</sup> Y<sup>1</sup> Z<sup>1</sup>

| Course Title: Dissertation-I/ Industrial Project                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |               |    |              |                    |                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---------------|----|--------------|--------------------|------------------|
| Course Code: MCSEPDI324                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |               |    |              | Examination Scheme |                  |
| Total Number of Lecture Hours: 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |               |    |              | External           | 252              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   |               |    |              | Internal           | 98               |
| Lecture (L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6 | Practical (P) | 16 | Tutorial (T) | 0                  | Total Credits 14 |
| <b>Description</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |               |    |              |                    |                  |
| <ul style="list-style-type: none"> <li>In the Dissertation-I, students shall choose a specific topic/area for their dissertation and carry out the literature survey of the chosen area. Students are encouraged to work towards somereal-lifeproblem or issue/s of societal importance in order to ensure relevant research. Each student shall submit a dissertation report at the end of the third semester and appear in presentation/viva voce before the Departmental Committee. The dissertation report should also contain the problem specification and milestones to be achieved in solving theproblem.</li> <li>At the beginning of the third semester, a supervisor will be assigned to each student. TheSupervisor shall provide a syllabus and plan of study including relevant research papers tothe student. The student shall have to maintain a proper diary reflecting the activities and progress accomplished in his/her work and update the same regularly.</li> <li>The Supervisor shall monitor the progress of the student on weekly basis. Out of the 98 marks stipulated for Internal Semester Evaluation (ISE) of the Dissertation-I, fifty percent shall be awarded on the basis of continuous assessment by the respectiveSupervisor, while the remaining fifty percent shall be evaluated during the presentation/viva-voce to be held before the Departmental Committee.</li> <li>The External Semester Evaluation (ESE) shall be held by an approved external examiner. The External Semester Evaluation (ESE) shall be of 252 marks. The break-up of ESE 252 marks shall be as follows:</li> </ul> |   |               |    |              |                    |                  |
| <p>Presentation: 20% marks</p> <p>Viva-voce: 40 % marks</p> <p>Dissertation writing based on state of art, fundamentals of the topic and its viability: 40 % marks</p>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |               |    |              |                    |                  |

Faculty At The Institute Date: 10/10/2018

## 4<sup>th</sup> Semester

Salisbury 4/16 M-201 (1961) 51. (2) (3) (4)

| Course Title: Dissertation-II/ Industrial Project                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   |               |    |              |                    |                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---------------|----|--------------|--------------------|------------------|
| Course Code: MCSEPDI424                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   |               |    |              | Examination Scheme |                  |
| Total Number of Lecture Hours: 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   |               |    |              | External           | 396              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |               |    |              | Internal           | 154              |
| Lecture (L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8 | Practical (P) | 20 | Tutorial (T) | 4                  | Total Credits 22 |
| Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   |               |    |              |                    |                  |
| <ul style="list-style-type: none"> <li>Dissertation-II shall commence with the fourth semester wherein a student accumulates 22 credits on successful completion of the same. This is in addition to the Dissertation-I during the third semester wherein a student shall choose a specific research topic/area and undertake its study.</li> <li>A thesis outlining the entire problem, including a survey of literature (results from Dissertation-I) and the various results obtained along with their solutions is expected to be produced by each student. A Thesis Committee shall check the thesis for its completeness. A soft copy of the thesis in PDF format (in specific style) should be sent to the Thesis Committee, before its final submission. The Thesis Committee can recommend for modifications of the thesis or offer suggestions for improvement of the same for resubmission. The Thesis committee shall also examine for suitability of publication (including any possible plagiarism) before the thesis goes in print and for binding.</li> <li>Consequent to the thesis being accepted and approved by the Thesis Committee, the Viva-voce examination of the student shall be conducted by an approved Examiner. The candidates who fail to submit the dissertation work within the stipulated time have to submit the same at the time of next ensuing examination.</li> <li>Out of the 154 marks stipulated for Internal Semester Evaluation (ISE) of the Dissertation-II, fifty percent shall be awarded on the basis of continuous assessment by the respective Supervisor, while the remaining fifty percent shall be evaluated during the presentation/viva-voce to be held before the Departmental Committee. Out of the 396 marks stipulated for the External Semester Evaluation (ESE), fifty percent marks shall be awarded on the basis of viva-voce and fifty percent marks for general evaluation of thesis</li> </ul> |   |               |    |              |                    |                  |

falling in with the ~~new~~ <sup>present</sup> ( ) <sup>new</sup> ( ) <sup>new</sup>

## PROGRAM ELECTIVE-I & II

Section A & B M.A. M.Sc. M.Com. (20)

| Course Title: Data Science        |   |               |   |              |                    |               |  |   |
|-----------------------------------|---|---------------|---|--------------|--------------------|---------------|--|---|
| Course Code: MCSEDA124            |   |               |   |              | Examination Scheme |               |  |   |
| Total Number of Lecture Hours: 48 |   |               |   |              | External           | 72            |  |   |
|                                   |   |               |   |              | Internal           | 28            |  |   |
| Lecture (L)                       | 4 | Practical (P) | 0 | Tutorial (T) | 0                  | Total Credits |  | 4 |

### ***Course Objectives***

- To introduce the fundamental concepts of data science and its applications.
- To impart knowledge of statistical analysis, data preprocessing, and visualization.
- To develop skills for applying machine learning models on real-world data.
- To familiarize students with data science tools, techniques, and ethical aspects.

| Course Content | No. of Teaching Hours |
|----------------|-----------------------|
| UNIT 1         | 11 Hrs                |

Introduction to Data Science

What is Data Science? Need and importance, Data Science Life Cycle, Roles of a Data Scientist, Types of Data and Sources, Structured vs Unstructured Data, Introduction to Big Data and Hadoop Ecosystem

|               |               |
|---------------|---------------|
| <b>UNIT 2</b> | <b>13 Hrs</b> |
|---------------|---------------|

## Data Preprocessing and Visualization

Data Cleaning: Handling missing data, outliers, Data Transformation: Normalization, encoding, Data Reduction Techniques, Exploratory Data Analysis (EDA), Visualization tools: Matplotlib, Seaborn, Tableau basics

|               |               |
|---------------|---------------|
| <b>UNIT 3</b> | <b>12 Hrs</b> |
|---------------|---------------|

Statistical Methods for Data Science

Descriptive and Inferential Statistics, Probability Distributions (Normal, Binomial, Poisson), Hypothesis Testing, Correlation and Regression Analysis, Sampling Methods and Estimation

|        |        |
|--------|--------|
| UNIT 4 | 12 Hrs |
|--------|--------|

Machine Learning Basics for Data Science

## Introduction to Machine Learning, Supervised vs Unsupervised Learning, Regression, Classification, Clustering, Overfitting and Underfitting, Model Evaluation Metrics (Accuracy, Precision, Recall, F1 Score)

### Recommended Books:

- *Joel Grus, "Data Science from Scratch", O'Reilly Media.*
- *Aurélien Géron, "Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow", O'Reilly Media.*
- *Chanchal Chatterjee, "Data Science and Analytics", McGraw Hill.*
- *Tirthajyoti Sarkar, "Data Science and Machine Learning Projects", Packt Publishing.*

### **Course Learning Outcomes:**

Course Learning Outcomes:

1. Understand the foundational concepts and processes of data science.
2. Perform data cleaning, transformation, and visualization tasks.
3. Apply statistical methods to analyze and interpret data.
4. Implement machine learning algorithms on datasets and evaluate models.

### Level of CLO-PLO Mapping

| CLOs | PLOs |   |   |   |   |   |   |   |   |    |    |    |
|------|------|---|---|---|---|---|---|---|---|----|----|----|
|      | 1    | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| 1    | 3    | 2 | 2 | 1 | 1 | 1 | 2 | 1 | 1 | 1  | 1  | 1  |
| 2    | 3    | 3 | 2 | 2 | 3 | 1 | 1 | 1 | 2 | 2  | 2  | 2  |
| 3    | 3    | 3 | 3 | 2 | 2 | 1 | 2 | 1 | 2 | 2  | 2  | 2  |
| 4    | 3    | 3 | 3 | 2 | 3 | 2 | 2 | 2 | 2 | 2  | 2  | 2  |

| Course Title: Distributed Systems                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |               |   |              |   |   |                       |    |   |   |    |    |    |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---------------|---|--------------|---|---|-----------------------|----|---|---|----|----|----|--|--|--|
| Course Code: MCSEDAB124                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |               |   |              |   |   | Examination Scheme    |    |   |   |    |    |    |  |  |  |
| Total Number of Lecture Hours: 48                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |               |   |              |   |   | External              | 72 |   |   |    |    |    |  |  |  |
| Lecture (L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4 | Practical (P) | 0 | Tutorial (T) |   | 0 | Total Credits         |    | 4 |   |    |    |    |  |  |  |
| <b>Course Objectives</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   |               |   |              |   |   |                       |    |   |   |    |    |    |  |  |  |
| <ul style="list-style-type: none"> <li>• To study foundations of distributed systems.</li> <li>• To understand in detail network virtualization and remote invocations required for a distributed system.</li> <li>• To introduce the idea of peer-to-peer services and file system.</li> <li>• To understand clock synchronization techniques, transactions and concurrency control mechanisms.</li> </ul>                                                                                                    |   |               |   |              |   |   |                       |    |   |   |    |    |    |  |  |  |
| Course Content                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   |               |   |              |   |   | No. of Teaching Hours |    |   |   |    |    |    |  |  |  |
| UNIT 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |               |   |              |   |   | 11 Hrs                |    |   |   |    |    |    |  |  |  |
| Introduction – Taxonomy of Distributed Systems - Scalable performance - load balancing and availability. Models of computation - shared memory and message passing system - synchronous and asynchronous systems. Various Paradigms in Distributed Applications.                                                                                                                                                                                                                                               |   |               |   |              |   |   |                       |    |   |   |    |    |    |  |  |  |
| UNIT 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |               |   |              |   |   | 13 Hrs                |    |   |   |    |    |    |  |  |  |
| Communication in Distributed Systems- Remote Procedure Call – Remote Object Invocation-Message-Oriented Communication – Unicasting, Multicasting and Broadcasting – Group Communication. System Model – Inter process Communication - the API for internet protocols – External data representation and Multicast communication.                                                                                                                                                                               |   |               |   |              |   |   |                       |    |   |   |    |    |    |  |  |  |
| UNIT 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |               |   |              |   |   | 12 Hrs                |    |   |   |    |    |    |  |  |  |
| Peer-to-peer Systems – Introduction - Napster and its legacy - Peer-to-peer – Middleware - Routing overlays. Distributed File Systems –Introduction - File service architecture – Andrew File system. Features-File model -File accessing models - File sharing semantics, Naming: Identifiers, Addresses, Name Resolution – Name Space Implementation – Name Caches – LDAP.                                                                                                                                   |   |               |   |              |   |   |                       |    |   |   |    |    |    |  |  |  |
| UNIT 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |               |   |              |   |   | 12 Hrs                |    |   |   |    |    |    |  |  |  |
| Clocks, events and process states - Synchronizing physical clocks- Logical time and logical clocks - Global states – Coordination and Agreement – Introduction - Distributed mutual exclusion – Elections – Transactions and Concurrency Control– Transactions -Nested transactions – Locks – Optimistic concurrency control - Timestamp ordering – Atomic Commit protocols -Distributed deadlocks – Replication – Case study (Coda)                                                                           |   |               |   |              |   |   |                       |    |   |   |    |    |    |  |  |  |
| <b>Recommended Books:</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   |               |   |              |   |   |                       |    |   |   |    |    |    |  |  |  |
| <ul style="list-style-type: none"> <li>• Tanenbaum A.S., Van Steen M., "Distributed Systems: Principles and Paradigms", Pearson Education.</li> <li>• George Coulouris, Jean Dollimore and Tim Kindberg, "Distributed Systems Concepts and Design", Fifth Edition, Pearson Education.</li> <li>• Pradeep K Sinha, "Distributed Operating Systems: Concepts and Design", Prentice Hall of India.</li> <li>• Liu M.L., "Distributed Computing, Principles and Applications", Pearson Education, 2004.</li> </ul> |   |               |   |              |   |   |                       |    |   |   |    |    |    |  |  |  |
| <b>Course Learning Outcomes:</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |               |   |              |   |   |                       |    |   |   |    |    |    |  |  |  |
| <ol style="list-style-type: none"> <li>1. Understand the design principles and architecture of distributed systems.</li> <li>2. Analyze the functioning of communication mechanisms such as RPC, multicasting, etc.</li> <li>3. Analyze the design and functioning of existing distributed file systems.</li> <li>4. Apply various distributed algorithms related to clock synchronization, concurrency control, deadlock detection, load balancing, etc.</li> </ol>                                           |   |               |   |              |   |   |                       |    |   |   |    |    |    |  |  |  |
| <b>Level of CLO-PLO Mapping</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |               |   |              |   |   |                       |    |   |   |    |    |    |  |  |  |
| CLOs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   | PLOs          |   |              |   |   |                       |    |   |   |    |    |    |  |  |  |
| CLOs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   | 1             | 2 | 3            | 4 | 5 | 6                     | 7  | 8 | 9 | 10 | 11 | 12 |  |  |  |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   | 3             | 2 | 1            | 1 | 1 | –                     | –  | – | – | –  | –  | 2  |  |  |  |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   | 3             | 3 | 2            | 2 | 2 | –                     | –  | – | – | 1  | –  | 2  |  |  |  |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   | 2             | 3 | 2            | 2 | 2 | –                     | –  | – | – | 1  | –  | 2  |  |  |  |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   | 3             | 3 | 3            | 2 | 3 | –                     | –  | – | – | 1  | 1  | 2  |  |  |  |


 (22)

| Course Title: Data Preparation and Analysis                                                                                                                                                                                                                                                                                                                            |  |      |               |   |   |              |                       |    |               |   |    |    |    |  |  |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|------|---------------|---|---|--------------|-----------------------|----|---------------|---|----|----|----|--|--|--|--|--|--|--|
| Course Code: MCSEDAC124                                                                                                                                                                                                                                                                                                                                                |  |      |               |   |   |              | Examination Scheme    |    |               |   |    |    |    |  |  |  |  |  |  |  |
| Total Number of Lecture Hours: 48                                                                                                                                                                                                                                                                                                                                      |  |      |               |   |   |              | External              | 72 |               |   |    |    |    |  |  |  |  |  |  |  |
| Lecture (L)                                                                                                                                                                                                                                                                                                                                                            |  | 4    | Practical (P) |   | 0 | Tutorial (T) |                       | 0  | Total Credits |   | 4  |    |    |  |  |  |  |  |  |  |
| <b>Course Objectives</b>                                                                                                                                                                                                                                                                                                                                               |  |      |               |   |   |              |                       |    |               |   |    |    |    |  |  |  |  |  |  |  |
| 1. To understand various types of data and their sources.<br>2. To learn techniques for data cleaning, transformation, integration, and reduction.<br>3. To prepare data for advanced analytics using feature engineering and selection.<br>4. To apply techniques for handling missing data, outliers, and noise in datasets.                                         |  |      |               |   |   |              |                       |    |               |   |    |    |    |  |  |  |  |  |  |  |
| Course Content                                                                                                                                                                                                                                                                                                                                                         |  |      |               |   |   |              | No. of Teaching Hours |    |               |   |    |    |    |  |  |  |  |  |  |  |
| UNIT 1                                                                                                                                                                                                                                                                                                                                                                 |  |      |               |   |   |              | 10 Hrs                |    |               |   |    |    |    |  |  |  |  |  |  |  |
| <b>Introduction to Data and Data Sources</b><br>Types of data: structured, semi-structured, unstructured: Sources of data: databases, web, sensors, APIs: Understanding data formats: CSV, JSON, XML: Overview of data science workflow and the role of data preparation                                                                                               |  |      |               |   |   |              |                       |    |               |   |    |    |    |  |  |  |  |  |  |  |
| UNIT 2                                                                                                                                                                                                                                                                                                                                                                 |  |      |               |   |   |              | 12 Hrs                |    |               |   |    |    |    |  |  |  |  |  |  |  |
| <b>Data Cleaning and Preprocessing</b><br>Handling missing data: deletion, imputation techniques: Identifying and treating outliers and noisy data: Data normalization and standardization: Data inconsistency detection and resolution                                                                                                                                |  |      |               |   |   |              |                       |    |               |   |    |    |    |  |  |  |  |  |  |  |
| UNIT 3                                                                                                                                                                                                                                                                                                                                                                 |  |      |               |   |   |              | 12 Hrs                |    |               |   |    |    |    |  |  |  |  |  |  |  |
| <b>Data Integration, Transformation, and Reduction</b><br>Data integration from multiple sources: Schema integration and conflict resolution: Data transformation: aggregation, generalization, discretization, encoding: Data reduction: PCA, sampling, attribute subset selection                                                                                    |  |      |               |   |   |              |                       |    |               |   |    |    |    |  |  |  |  |  |  |  |
| UNIT 4                                                                                                                                                                                                                                                                                                                                                                 |  |      |               |   |   |              | 14 Hrs                |    |               |   |    |    |    |  |  |  |  |  |  |  |
| <b>Feature Engineering and Data Preparation Tools</b><br>Feature extraction and construction: Feature selection: filter, wrapper, and embedded methods: Introduction to automated data preparation tools: Data preparation using Python: Pandas, NumPy, Scikit-learn                                                                                                   |  |      |               |   |   |              |                       |    |               |   |    |    |    |  |  |  |  |  |  |  |
| <b>Books:</b>                                                                                                                                                                                                                                                                                                                                                          |  |      |               |   |   |              |                       |    |               |   |    |    |    |  |  |  |  |  |  |  |
| 1. "Data Preparation for Data Mining" by Dorian Pyle<br>2. "Python for Data Analysis" by Wes McKinney<br>3. "Data Wrangling with Pandas" by Jacqueline Kazil & Katharine Jarmul<br>4. "Feature Engineering for Machine Learning" by Alice Zheng and Amanda Casari                                                                                                      |  |      |               |   |   |              |                       |    |               |   |    |    |    |  |  |  |  |  |  |  |
| <b>Course Learning Outcomes</b>                                                                                                                                                                                                                                                                                                                                        |  |      |               |   |   |              |                       |    |               |   |    |    |    |  |  |  |  |  |  |  |
| 1. Understand the types of data and their implications for data preparation.<br>2. Apply techniques for data cleaning, integration, transformation, and reduction.<br>3. Perform data preparation tasks using tools like Python and libraries like Pandas, NumPy, and Scikit-learn.<br>4. Evaluate and handle missing data, outliers, noise, and data inconsistencies. |  |      |               |   |   |              |                       |    |               |   |    |    |    |  |  |  |  |  |  |  |
| <b>Level of CLO-PLO Mapping</b>                                                                                                                                                                                                                                                                                                                                        |  |      |               |   |   |              |                       |    |               |   |    |    |    |  |  |  |  |  |  |  |
| CLOs                                                                                                                                                                                                                                                                                                                                                                   |  | PLOs |               |   |   |              |                       |    |               |   |    |    |    |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                        |  | 1    | 2             | 3 | 4 | 5            | 6                     | 7  | 8             | 9 | 10 | 11 | 12 |  |  |  |  |  |  |  |
| 1                                                                                                                                                                                                                                                                                                                                                                      |  | 3    | 2             | 1 | 1 | 1            | -                     | -  | -             | 1 | -  | -  |    |  |  |  |  |  |  |  |
| 2                                                                                                                                                                                                                                                                                                                                                                      |  | 3    | 3             | 2 | 2 | 2            | -                     | -  | -             | 2 | -  | -  |    |  |  |  |  |  |  |  |
| 3                                                                                                                                                                                                                                                                                                                                                                      |  | 3    | 3             | 3 | 2 | 3            | 2                     | -  | 1             | 2 | 1  | 2  |    |  |  |  |  |  |  |  |
| 4                                                                                                                                                                                                                                                                                                                                                                      |  | 2    | 3             | 3 | 2 | 2            | 1                     | -  | -             | 2 | -  | 1  |    |  |  |  |  |  |  |  |

(3)

1. *Introduction to Data and Data Sources*  
 2. *Data Cleaning and Preprocessing*  
 3. *Data Integration, Transformation, and Reduction*  
 4. *Feature Engineering and Data Preparation Tools*

(23)

| Course Title: Recommender System                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   |               |   |              |   |   |                       |    |   |   |  |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---------------|---|--------------|---|---|-----------------------|----|---|---|--|--|--|--|--|--|
| Course Code: MCSEDAD124                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |               |   |              |   |   | Examination Scheme    |    |   |   |  |  |  |  |  |  |
| Total Number of Lecture Hours: 48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |               |   |              |   |   | External              | 72 |   |   |  |  |  |  |  |  |
| Lecture (L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4 | Practical (P) | 0 | Tutorial (T) |   | 0 | Total Credits         |    | 4 |   |  |  |  |  |  |  |
| <b>Course Objectives</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |               |   |              |   |   |                       |    |   |   |  |  |  |  |  |  |
| <ul style="list-style-type: none"> <li>Students will be able to explain key concepts in information retrieval, including retrieval models, search techniques, and the role of relevance feedback and user profiles in enhancing search effectiveness.</li> <li>Students will develop skills in designing and implementing content-based filtering systems, including feature extraction, item profiling, and user profile learning methods.</li> <li>Students will evaluate different collaborative filtering approaches, including user-based and item-based methods, while understanding the challenges and potential vulnerabilities of these systems.</li> <li>Students will learn to assess the performance of various recommender systems using established evaluation metrics, and classify systems into categories</li> </ul> |   |               |   |              |   |   |                       |    |   |   |  |  |  |  |  |  |
| Course Content                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |               |   |              |   |   | No. of Teaching Hours |    |   |   |  |  |  |  |  |  |
| UNIT 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |               |   |              |   |   | 12 Hrs                |    |   |   |  |  |  |  |  |  |
| <b>Introduction to Recommender Systems (RS):</b> Goals of RS, Basic models of RS, Challenges in RS.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |               |   |              |   |   |                       |    |   |   |  |  |  |  |  |  |
| <b>Collaborative filtering:</b> Key properties of rating matrices, user and item based nearest recommendation, predicting ratings, neighbourhood-based methods (clustering, dimensionality reduction, regression modelling and graph models), Model based collaborative filtering, Content-based, knowledge based, ensemble based and hybrid recommender system.                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   |               |   |              |   |   |                       |    |   |   |  |  |  |  |  |  |
| UNIT 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |               |   |              |   |   | 12 Hrs                |    |   |   |  |  |  |  |  |  |
| <b>Evaluating Recommender Systems:</b> Explanations in recommender systems, General properties of evaluation research, popular evaluation designs, goals of evaluation design issues in offline recommender evaluation, accuracy metrics in offline evaluation. <b>Context, time and location sensitive RS:</b> Multidimensional approach, context pre filtering, post filtering, contextual modelling, temporal collaborative filtering, discrete temporal models, and location aware recommender systems.                                                                                                                                                                                                                                                                                                                           |   |               |   |              |   |   |                       |    |   |   |  |  |  |  |  |  |
| UNIT 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |               |   |              |   |   | 12 Hrs                |    |   |   |  |  |  |  |  |  |
| Structural recommendations in networks Ranking algorithms, recommendations by collective classification, recommending friends: link prediction, social influence analysis and viral marketing.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |               |   |              |   |   |                       |    |   |   |  |  |  |  |  |  |
| <b>Social and trust centric RS:</b> Multidimensional models for social context, network centric and trust centric methods, user interaction in social recommenders.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |               |   |              |   |   |                       |    |   |   |  |  |  |  |  |  |
| UNIT 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |               |   |              |   |   | 12 Hrs                |    |   |   |  |  |  |  |  |  |
| <b>Attack-resistant RS: Trade-offs</b> Attack models, Types of attacks, detecting attacks on RS, strategies for robust RS, Online consumer decision making Learning to rank, multi-armed bandit algorithms, group RS, multi criteria RS, Active learning in RS, privacy in RS, Recommender systems and next generation web.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   |               |   |              |   |   |                       |    |   |   |  |  |  |  |  |  |
| <b>Recommended Books:</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |               |   |              |   |   |                       |    |   |   |  |  |  |  |  |  |
| 1. Charu C. Aggarwal, <i>Recommender Systems: The Textbook</i> , Springer (2016), 1st ed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |               |   |              |   |   |                       |    |   |   |  |  |  |  |  |  |
| 2. Ricci F., Rokach L., Shapira D., Kantor B.P., <i>Recommender Systems Handbook</i> , Springer(2011), 1st ed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |               |   |              |   |   |                       |    |   |   |  |  |  |  |  |  |
| 3. Manouselis N., Drachsler H., Verbert K., <i>Recommender Systems for Learning</i> , Springer (2013), 1st ed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |               |   |              |   |   |                       |    |   |   |  |  |  |  |  |  |
| <b>Course Learning Outcomes:</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   |               |   |              |   |   |                       |    |   |   |  |  |  |  |  |  |
| 1. Students will be able to describe the objectives of RS, differentiate among basic types and identify common challenges like data sparsity, scalability, and cold start problems.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |               |   |              |   |   |                       |    |   |   |  |  |  |  |  |  |
| 2. Students will gain the ability to implement user-based and item-based nearest neighbour methods, clustering, dimensionality reduction, regression models, and hybrid approaches combining multiple recommendation techniques.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   |               |   |              |   |   |                       |    |   |   |  |  |  |  |  |  |
| 3. Students will learn to design offline evaluation experiments, utilize metrics such as precision, recall, MAE, and build context-aware, time-aware, and location-aware recommender systems.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |               |   |              |   |   |                       |    |   |   |  |  |  |  |  |  |
| 4. Students will be able to model social influence, predict links, design robust RS against adversarial attacks, and explore current trends in next-gen web environments.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |               |   |              |   |   |                       |    |   |   |  |  |  |  |  |  |
| Level of CLO-PLO Mapping                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |               |   |              |   |   |                       |    |   |   |  |  |  |  |  |  |
| CLOs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   | PLOs          |   |              |   |   |                       |    |   |   |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   | 1             | 2 | 3            | 4 | 5 | 6                     | 7  | 8 | 9 |  |  |  |  |  |  |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   | 3             | 2 | 2            | 2 | 1 | 1                     | 0  | 1 | 1 |  |  |  |  |  |  |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   | 3             | 3 | 3            | 2 | 3 | 1                     | 0  | 1 | 2 |  |  |  |  |  |  |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   | 3             | 3 | 3            | 3 | 3 | 2                     | 1  | 2 | 2 |  |  |  |  |  |  |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   | 3             | 3 | 3            | 3 | 3 | 2                     | 1  | 2 | 3 |  |  |  |  |  |  |