
11/3/2016

1

Divide-and-Conquer

The most-well known algorithm design
strategy:

1. Divide instance of problem into two or
more smaller instances

2. Solve smaller instances recursively

3. Obtain solution to original (larger) instance
by combining these solutions

Randomized Algorithm

 An algorithm whose behaviour depends on:
– an input
– a sequence of random bits

 Can be faster and simpler than a
deterministic (no random bits) algorithm

 Two types:
– Las Vegas
– Monte Carlo

11/3/2016

2

Las Vegas and Monte Carlo

 Named after famous casinos
 Las Vegas:

– always returns correct answer
– running time fast with a high probability
– “everyone wins in Vegas”

 Monte Carlo:
– always runs fast
– returns correct answer with a high probability

Primality Test

 Fermat’s Little Theorem:
– If n is prime, then for all a in [1,n-1],

• an – a = 0 (mod n)
– E.g. 43 – 4 = 60 is divisible by 3

 First attempt at algorithm:
1. Choose a at random from [2,n-1]
2. If an – a = 0 (mod n), then return

COMPOSITE
3. Else return PRIME

11/3/2016

3

Primality Test

 However, there are exceptions to Fermat’s
Little Theorem, called the Carmichael
numbers

 The previous algorithm returns PRIME for
the Carmichael numbers

 A modification to the algorithm yields the
Miller-Rabin test, which bounds the
probability of running into a Carmichael
number at 0.5

Miller-Rabin – Proof of Bound

11/3/2016

4

Primality Test

 Algorithm: is n prime?
– NO – if Miller-Rabin returns COMPOSITE
– YES – if Miller-Rabin runs k times without

returning COMPOSITE

4 -8

The Divide-and-Conquer Strategy

11/3/2016

5

4 -9

A simple example
 finding the maximum of a set S of n numbers

4 -10

 Time complexity:
T(n): # of comparisons

 Calculation of T(n):
Assume n = 2k,

T(n) = 2T(n/2)+1
= 2(2T(n/4)+1)+1
= 4T(n/4)+2+1

:
=2k-1T(2)+2k-2+…+4+2+1
=2k-1+2k-2+…+4+2+1
=2k-1 = n-1

T(n)=




 2T(n/2)+1
1

, n>2
, n2

Time complexity

11/3/2016

6

4 -11

A general divide-and-conquer
algorithm
Step 1: If the problem size is small, solve this

problem directly; otherwise, split the original
problem into 2 sub-problems with equal
sizes.

Step 2: Recursively solve these 2 sub-problems
by applying this algorithm.

Step 3: Merge the solutions of the 2 sub-
problems into a solution of the original
problem.

4 -12

Time complexity of the general
algorithm
 Time complexity:

where S(n) : time for splitting
M(n) : time for merging

b : a constant
c : a constant

T(n)=




 2T(n/2)+S(n)+M(n)
b

, n  c
, n < c

11/3/2016

7

4 -13

Binary search

 e.g. 2 4 5 6 7 8 9





search 7: needs 3 comparisons
 time: O(log n)
 The binary search can be used only if the elements

are sorted and stored in an array.

4 -14

Algorithm binary-search

Input: A sorted sequence of n elements stored in an array.
Output: The position of x (to be searched).
Step 1: If only one element remains in the array, solve it

directly.
Step 2: Compare x with the middle element of the array.
Step 2.1: If x = middle element, then output it and stop.
Step 2.2: If x < middle element, then recursively solve the

problem with x and the left half array.
Step 2.3: If x > middle element, then recursively solve the

problem with x and the right half array.

11/3/2016

8

4 -15

Algorithm BinSearch(a, low, high, x)
// a[]: sorted sequence in nondecreasing order
// low, high: the bounds for searching in a []
// x: the element to be searched
// If x = a[j], for some j, then return j else return –1
if (low > high) then return –1 // invalid range
if (low = high) then // if small P
if (x == a[i]) then return i
else return -1

else // divide P into two smaller subproblems
mid = (low + high) / 2
if (x == a[mid]) then return mid
else if (x < a[mid]) then

return BinSearch(a, low, mid-1, x)
else return BinSearch(a, mid+1, high, x)

Quick Sort
 Small instance has n <= 1. Every small instance is a

sorted instance.
 To sort a large instance, select a pivot element from out

of the n elements.
 Partition the n elements into 3 groups left, middle and

right.
 The middle group contains only the pivot element.
 All elements in the left group are <= pivot.
 All elements in the right group are >= pivot.
 Sort left and right groups recursively.
 Answer is sorted left group, followed by middle group

followed by sorted right group.

11/3/2016

9

Example
6 2 8 5 11 10 4 1 9 7 3

Use 6 as the pivot.

2 85 11104 1 973 6

Sort left and right groups recursively.

Choice Of Pivot

 Pivot is leftmost element in list that is to be sorted.
 When sorting a[6:20], use a[6] as the pivot.
 Text implementation does this.

 Randomly select one of the elements to be sorted
as the pivot.
 When sorting a[6:20], generate a random number r in

the range [6, 20]. Use a[r] as the pivot.

11/3/2016

10

Choice Of Pivot
 Median-of-Three rule. From the leftmost, middle,

and rightmost elements of the list to be sorted,
select the one with median key as the pivot.
 When sorting a[6:20], examine a[6], a[13] ((6+20)/2),

and a[20]. Select the element with median (i.e., middle)
key.
 If a[6].key = 30, a[13].key = 2, and a[20].key = 10,

a[20] becomes the pivot.
 If a[6].key = 3, a[13].key = 2, and a[20].key = 10, a[6]

becomes the pivot.

Choice Of Pivot
 If a[6].key = 30, a[13].key = 25, and a[20].key = 10,

a[13] becomes the pivot.
 When the pivot is picked at random or when the

median-of-three rule is used, we can use the quick
sort code of the text provided we first swap the
leftmost element and the chosen pivot.

pivot

swap

11/3/2016

11

Partitioning Into Three Groups

 Sort a = [6, 2, 8, 5, 11, 10, 4, 1, 9, 7, 3].
 Leftmost element (6) is the pivot.
 When another array b is available:
 Scan a from left to right (omit the pivot in this scan),

placing elements <= pivot at the left end of b and the
remaining elements at the right end of b.
 The pivot is placed at the remaining position of the b.

4 -22

Quicksort

 Sort into nondecreasing order

[26 5 37 1 61 11 59 15 48 19]
[26 5 19 1 61 11 59 15 48 37]
[26 5 19 1 15 11 59 61 48 37]
[11 5 19 1 15] 26 [59 61 48 37]
[11 5 1 19 15] 26 [59 61 48 37]
[1 5] 11 [19 15] 26 [59 61 48 37]
1 5 11 15 19 26 [59 61 48 37]
1 5 11 15 19 26 [59 37 48 61]
1 5 11 15 19 26 [48 37] 59 [61]
1 5 11 15 19 26 37 48 59 61

11/3/2016

12

4 -23

Algorithm Quicksort
Input: A set S of n elements.
Output: The sorted sequence of the inputs in

nondecreasing order.
Step 1: If |S|2, solve it directly.
Step 2: (Partition step) Use a pivot to scan all

elements in S. Put the smaller elements in S1, and
the larger elements in S2.

Step 3: Recursively solve S1 and S2.

4 -24

Time complexity of Quicksort
 time in the worst case:

(n-1)+(n-2)+...+1 = n(n-1)/2= O(n2)
 time in the best case:

In each partition, the problem is always divided
into two subproblems with almost equal size.

... ...

.
.
.

log2n

n

×2 = nn
2

×4 = nn
4

11/3/2016

13

4 -25

Time complexity of the best case
 T(n): time required for sorting n elements
 T(n)≦ cn+2T(n/2), for some constant c.

≦ cn+2(c．n/2 + 2T(n/4))
≦ 2cn + 4T(n/4)

…
≦ cnlog2n + nT(1) = O(nlogn)

3 -26

The Greedy Method

11/3/2016

14

3 -27

The knapsack problem

 n objects, each with a weight wi > 0
a profit pi > 0

capacity of knapsack: M

Maximize
Subject to

0  xi  1, 1  i  n

p xi i
i n1 


w x Mi i
i n1 
 

3 -28

The knapsack algorithm
 The greedy algorithm:

Step 1: Sort pi/wi into nonincreasing order.
Step 2: Put the objects into the knapsack according

to the sorted sequence as possible as we can.
 e. g.

n = 3, M = 20, (p1, p2, p3) = (25, 24, 15)
(w1, w2, w3) = (18, 15, 10)
Sol: p1/w1 = 25/18 = 1.39

p2/w2 = 24/15 = 1.6
p3/w3 = 15/10 = 1.5

Optimal solution: x1 = 0, x2 = 1, x3 = 1/2

11/3/2016

15

3 -29

The single-source shortest path
problem
 shortest paths from v0 to all destinations

3 -30

Dijkstra’s algorithm

 1 2 3 4 5 6 7 8
1 0
2 300 0

3 1000 800 0
4 1200 0
5 1500 0 250
6 1000 0 900 1400
7 0 1000
8 1700 0

In the cost adjacency matrix,
all entries not shown are
+.

11/3/2016

16

3 -31 Time complexity : O(n2), n = |V|.

 Vertex
Iteration S Selected (1) (2) (3) (4) (5) (6) (7) (8)

Initial ----
1 5 6 + + + 1500 0 250 + +
2 5,6 7 + + + 1250 0 250 1150 1650
3 5,6,7 4 + + + 1250 0 250 1150 1650
4 5,6,7,4 8 + + 2450 1250 0 250 1150 1650
5 5,6,7,4,8 3 3350 + 2450 1250 0 250 1150 1650
6 5,6,7,4,8,3 2 3350 3250 2450 1250 0 250 1150 1650
 5,6,7,4,8,3,2 3350 3250 2450 1250 0 250 1150 1650

32

Data Structure for SSAD

#define MAX_VERTICES 6
int cost[][MAX_VERTICES]=
{};
int distance[MAX_VERTICES];
short int found{MAX_VERTICES];
int n = MAX_VERTICES;

adjacency matrix

11/3/2016

17

33

shortest()
Void shortestpath(int v, int cost[][MAX_VERTICES], int dist [], int n, int found[])
{

int i,u,w;
for (i=0;i<n;i++) {

found[i]=FALSE;
dist [i] = cost[v][i];

}
found[v]=TRUE;
dist [v]=0;
for(i=0;i<n-2;i++){

u=choose(dist,n,found);
found[u]=TRUE;
for(w=0;w<n;w++)

if(dist [u]+cost[u][w] < dist [w])
dist [w] = dist [u]+cost[u][w];

}
}

O(n2)

34

Dynamic programming algorithms for all-pairs
shortest path
 We will study a new technique—dynamic programming

algorithms (typically for optimization problems)
 Ideas:

– Characterize the structure of an optimal solution
– Recursively define the value of an optimal solution
– Compute the value of an optimal solution in a bottom-

up fashion (using matrix to compute)
– Backtracking to construct an optimal solution from

computed information.

11/3/2016

18

35

Floyd-Warshall algorithm for
shortest path:
 Use a different dynamic-programming

formulation to solve the all-pairs shortest-paths
problem on a directed graph G=(V,E).

 The resulting algorithm, known as the Floyd-
Warshall algorithm, runs in O (V3) time.
– negative-weight edges may be present,
– but we shall assume that there are no negative-

weight cycles.

36

The structure of a shortest path:

 We use a different characterization of the structure of a
shortest path than we used in the matrix-multiplication-
based all-pairs algorithms.

 The algorithm considers the “intermediate” vertices of a
shortest path, where an intermediate vertex of a simple
path p=<v1,v2,…,vl> is any vertex in p other than v1 or vl,
that is, any vertex in the set {v2,v3,…,vl-1}

11/3/2016

19

37

Continue:

 Let the vertices of G be V={1,2,…,n}, and consider a
subset {1,2,…,k} of vertices for some k.

 For any pair of vertices i,j  V, consider all paths from i to
j whose intermediate vertices are all drawn from
{1,2,…,k},and let p be a minimum-weight path from
among them.

 The Floyd-Warshall algorithm exploits a relationship
between path p and shortest paths from i to j with all
intermediate vertices in the set {1,2,…,k-1}.

38

Relationship:

 The relationship depends on whether or not k is an
intermediate vertex of path p.

 If k is not an intermediate vertex of path p, then all
intermediate vertices of path p are in the set {1,2,…,k-1}.
Thus, a shortest path from vertex i to vertex j with all
intermediate vertices in the set {1,2,…,k-1} is also a
shortest path from i to j with all intermediate vertices in the
set {1,2,…,k}.

 If k is an intermediate vertex of path p,then we break p
down into i k j as shown Figure 2.p1 is a
shortest path from i to k with all intermediate vertices in
the set {1,2,…,k-1}, so as p2.

 1p  2p

11/3/2016

20

39

i j

kp1 p2

All intermediate vertices in {1,2,…,k-1}

P:all intermediate vertices in {1,2,…,k}

Figure 2. Path p is a shortest path from vertex i to vertex j,and
k is the highest-numbered intermediate vertex of p. Path p1,
the portion of path p from vertex i to vertex k,has all intermediate
vertices in the set {1,2,…,k-1}.The same holds for path p2 from
vertex k to vertex j.

40

A recursive solution to the all-
pairs shortest paths problem:
 Let dij

(k) be the weight of a shortest path from vertex i to
vertex j with all intermediate vertices in the set {1,2,…,k}.
A recursive definition is given by

 dij
(k)= wij if k=0,

 min(dij
(k-1),dik

(k-1)+dkj
(k-1)) if k 1.

 The matrix D(n)=(dij
(n)) gives the final answer-dij

(n)=
for all i,j V-because all intermediate vertices are in the
set {1,2,…,n}.

 

),(ji


11/3/2016

21

41

Computing the shortest-path
weights bottom up:
 FLOYD-WARSHALL(W)
 n rows[W]
 D(0) W
 for k 1 to n
 do for i 1 to n
 do for j 1 to n
 dij

(k) min(dij
(k-1),dik

(k-1)+dkj
(k-1))

 return D(n)









42

Example:

1

5 4

3

2

3 4

7-4

8

1 -52

 Figure 3

6

11/3/2016

22

43






























06
052

04
710
4830

D(0)=























NILNILNILNIL
NILNILNIL
NILNILNILNIL

NILNILNIL
NILNIL

5
44

3
22
111

(0)=

D(1)= (1)=






























06
20552

04
710
4830



























NILNILNILNIL
NIL

NILNILNILNIL
NILNILNIL

NILNIL

5
1414

3
22
111

44































06
20552

11504
710
44830

D(2)=























NILNILNILNIL
NIL

NILNIL
NILNILNIL

NIL

5
1414
223
22
1211

(2)=

D(3)= (3)=































06
20512

11504
710
44830



























NILNILNILNIL
NIL

NILNIL
NILNILNIL

NIL

5
1434
223
22
1211

11/3/2016

23

45




























06158
20512

35047
11403
44130

D(4)=























NIL
NIL

NIL
NIL

NIL

5434
1434
1234
1244
1241

(4)=

D(5)= (5)=




























06158
20512

35047
11403
42310



























NIL
NIL

NIL
NIL

NIL

5434
1434
1234
1244
1543

