
11/3/2016

1

Divide-and-Conquer

The most-well known algorithm design
strategy:

1. Divide instance of problem into two or
more smaller instances

2. Solve smaller instances recursively

3. Obtain solution to original (larger) instance
by combining these solutions

Randomized Algorithm

 An algorithm whose behaviour depends on:
– an input
– a sequence of random bits

 Can be faster and simpler than a
deterministic (no random bits) algorithm

 Two types:
– Las Vegas
– Monte Carlo

11/3/2016

2

Las Vegas and Monte Carlo

 Named after famous casinos
 Las Vegas:

– always returns correct answer
– running time fast with a high probability
– “everyone wins in Vegas”

 Monte Carlo:
– always runs fast
– returns correct answer with a high probability

Primality Test

 Fermat’s Little Theorem:
– If n is prime, then for all a in [1,n-1],

• an – a = 0 (mod n)
– E.g. 43 – 4 = 60 is divisible by 3

 First attempt at algorithm:
1. Choose a at random from [2,n-1]
2. If an – a = 0 (mod n), then return

COMPOSITE
3. Else return PRIME

11/3/2016

3

Primality Test

 However, there are exceptions to Fermat’s
Little Theorem, called the Carmichael
numbers

 The previous algorithm returns PRIME for
the Carmichael numbers

 A modification to the algorithm yields the
Miller-Rabin test, which bounds the
probability of running into a Carmichael
number at 0.5

Miller-Rabin – Proof of Bound

11/3/2016

4

Primality Test

 Algorithm: is n prime?
– NO – if Miller-Rabin returns COMPOSITE
– YES – if Miller-Rabin runs k times without

returning COMPOSITE

4 -8

The Divide-and-Conquer Strategy

11/3/2016

5

4 -9

A simple example
 finding the maximum of a set S of n numbers

4 -10

 Time complexity:
T(n): # of comparisons

 Calculation of T(n):
Assume n = 2k,

T(n) = 2T(n/2)+1
= 2(2T(n/4)+1)+1
= 4T(n/4)+2+1

:
=2k-1T(2)+2k-2+…+4+2+1
=2k-1+2k-2+…+4+2+1
=2k-1 = n-1

T(n)=

 2T(n/2)+1
1

, n>2
, n2

Time complexity

11/3/2016

6

4 -11

A general divide-and-conquer
algorithm
Step 1: If the problem size is small, solve this

problem directly; otherwise, split the original
problem into 2 sub-problems with equal
sizes.

Step 2: Recursively solve these 2 sub-problems
by applying this algorithm.

Step 3: Merge the solutions of the 2 sub-
problems into a solution of the original
problem.

4 -12

Time complexity of the general
algorithm
 Time complexity:

where S(n) : time for splitting
M(n) : time for merging

b : a constant
c : a constant

T(n)=

 2T(n/2)+S(n)+M(n)
b

, n c
, n < c

11/3/2016

7

4 -13

Binary search

 e.g. 2 4 5 6 7 8 9

search 7: needs 3 comparisons
 time: O(log n)
 The binary search can be used only if the elements

are sorted and stored in an array.

4 -14

Algorithm binary-search

Input: A sorted sequence of n elements stored in an array.
Output: The position of x (to be searched).
Step 1: If only one element remains in the array, solve it

directly.
Step 2: Compare x with the middle element of the array.
Step 2.1: If x = middle element, then output it and stop.
Step 2.2: If x < middle element, then recursively solve the

problem with x and the left half array.
Step 2.3: If x > middle element, then recursively solve the

problem with x and the right half array.

11/3/2016

8

4 -15

Algorithm BinSearch(a, low, high, x)
// a[]: sorted sequence in nondecreasing order
// low, high: the bounds for searching in a []
// x: the element to be searched
// If x = a[j], for some j, then return j else return –1
if (low > high) then return –1 // invalid range
if (low = high) then // if small P
if (x == a[i]) then return i
else return -1

else // divide P into two smaller subproblems
mid = (low + high) / 2
if (x == a[mid]) then return mid
else if (x < a[mid]) then

return BinSearch(a, low, mid-1, x)
else return BinSearch(a, mid+1, high, x)

Quick Sort
 Small instance has n <= 1. Every small instance is a

sorted instance.
 To sort a large instance, select a pivot element from out

of the n elements.
 Partition the n elements into 3 groups left, middle and

right.
 The middle group contains only the pivot element.
 All elements in the left group are <= pivot.
 All elements in the right group are >= pivot.
 Sort left and right groups recursively.
 Answer is sorted left group, followed by middle group

followed by sorted right group.

11/3/2016

9

Example
6 2 8 5 11 10 4 1 9 7 3

Use 6 as the pivot.

2 85 11104 1 973 6

Sort left and right groups recursively.

Choice Of Pivot

 Pivot is leftmost element in list that is to be sorted.
 When sorting a[6:20], use a[6] as the pivot.
 Text implementation does this.

 Randomly select one of the elements to be sorted
as the pivot.
 When sorting a[6:20], generate a random number r in

the range [6, 20]. Use a[r] as the pivot.

11/3/2016

10

Choice Of Pivot
 Median-of-Three rule. From the leftmost, middle,

and rightmost elements of the list to be sorted,
select the one with median key as the pivot.
 When sorting a[6:20], examine a[6], a[13] ((6+20)/2),

and a[20]. Select the element with median (i.e., middle)
key.
 If a[6].key = 30, a[13].key = 2, and a[20].key = 10,

a[20] becomes the pivot.
 If a[6].key = 3, a[13].key = 2, and a[20].key = 10, a[6]

becomes the pivot.

Choice Of Pivot
 If a[6].key = 30, a[13].key = 25, and a[20].key = 10,

a[13] becomes the pivot.
 When the pivot is picked at random or when the

median-of-three rule is used, we can use the quick
sort code of the text provided we first swap the
leftmost element and the chosen pivot.

pivot

swap

11/3/2016

11

Partitioning Into Three Groups

 Sort a = [6, 2, 8, 5, 11, 10, 4, 1, 9, 7, 3].
 Leftmost element (6) is the pivot.
 When another array b is available:
 Scan a from left to right (omit the pivot in this scan),

placing elements <= pivot at the left end of b and the
remaining elements at the right end of b.
 The pivot is placed at the remaining position of the b.

4 -22

Quicksort

 Sort into nondecreasing order

[26 5 37 1 61 11 59 15 48 19]
[26 5 19 1 61 11 59 15 48 37]
[26 5 19 1 15 11 59 61 48 37]
[11 5 19 1 15] 26 [59 61 48 37]
[11 5 1 19 15] 26 [59 61 48 37]
[1 5] 11 [19 15] 26 [59 61 48 37]
1 5 11 15 19 26 [59 61 48 37]
1 5 11 15 19 26 [59 37 48 61]
1 5 11 15 19 26 [48 37] 59 [61]
1 5 11 15 19 26 37 48 59 61

11/3/2016

12

4 -23

Algorithm Quicksort
Input: A set S of n elements.
Output: The sorted sequence of the inputs in

nondecreasing order.
Step 1: If |S|2, solve it directly.
Step 2: (Partition step) Use a pivot to scan all

elements in S. Put the smaller elements in S1, and
the larger elements in S2.

Step 3: Recursively solve S1 and S2.

4 -24

Time complexity of Quicksort
 time in the worst case:

(n-1)+(n-2)+...+1 = n(n-1)/2= O(n2)
 time in the best case:

In each partition, the problem is always divided
into two subproblems with almost equal size.

... ...

.
.
.

log2n

n

×2 = nn
2

×4 = nn
4

11/3/2016

13

4 -25

Time complexity of the best case
 T(n): time required for sorting n elements
 T(n)≦ cn+2T(n/2), for some constant c.

≦ cn+2(c．n/2 + 2T(n/4))
≦ 2cn + 4T(n/4)

…
≦ cnlog2n + nT(1) = O(nlogn)

3 -26

The Greedy Method

11/3/2016

14

3 -27

The knapsack problem

 n objects, each with a weight wi > 0
a profit pi > 0

capacity of knapsack: M

Maximize
Subject to

0 xi 1, 1 i n

p xi i
i n1

w x Mi i
i n1

3 -28

The knapsack algorithm
 The greedy algorithm:

Step 1: Sort pi/wi into nonincreasing order.
Step 2: Put the objects into the knapsack according

to the sorted sequence as possible as we can.
 e. g.

n = 3, M = 20, (p1, p2, p3) = (25, 24, 15)
(w1, w2, w3) = (18, 15, 10)
Sol: p1/w1 = 25/18 = 1.39

p2/w2 = 24/15 = 1.6
p3/w3 = 15/10 = 1.5

Optimal solution: x1 = 0, x2 = 1, x3 = 1/2

11/3/2016

15

3 -29

The single-source shortest path
problem
 shortest paths from v0 to all destinations

3 -30

Dijkstra’s algorithm

 1 2 3 4 5 6 7 8
1 0
2 300 0

3 1000 800 0
4 1200 0
5 1500 0 250
6 1000 0 900 1400
7 0 1000
8 1700 0

In the cost adjacency matrix,
all entries not shown are
+.

11/3/2016

16

3 -31 Time complexity : O(n2), n = |V|.

 Vertex
Iteration S Selected (1) (2) (3) (4) (5) (6) (7) (8)

Initial ----
1 5 6 + + + 1500 0 250 + +
2 5,6 7 + + + 1250 0 250 1150 1650
3 5,6,7 4 + + + 1250 0 250 1150 1650
4 5,6,7,4 8 + + 2450 1250 0 250 1150 1650
5 5,6,7,4,8 3 3350 + 2450 1250 0 250 1150 1650
6 5,6,7,4,8,3 2 3350 3250 2450 1250 0 250 1150 1650
 5,6,7,4,8,3,2 3350 3250 2450 1250 0 250 1150 1650

32

Data Structure for SSAD

#define MAX_VERTICES 6
int cost[][MAX_VERTICES]=
{};
int distance[MAX_VERTICES];
short int found{MAX_VERTICES];
int n = MAX_VERTICES;

adjacency matrix

11/3/2016

17

33

shortest()
Void shortestpath(int v, int cost[][MAX_VERTICES], int dist [], int n, int found[])
{

int i,u,w;
for (i=0;i<n;i++) {

found[i]=FALSE;
dist [i] = cost[v][i];

}
found[v]=TRUE;
dist [v]=0;
for(i=0;i<n-2;i++){

u=choose(dist,n,found);
found[u]=TRUE;
for(w=0;w<n;w++)

if(dist [u]+cost[u][w] < dist [w])
dist [w] = dist [u]+cost[u][w];

}
}

O(n2)

34

Dynamic programming algorithms for all-pairs
shortest path
 We will study a new technique—dynamic programming

algorithms (typically for optimization problems)
 Ideas:

– Characterize the structure of an optimal solution
– Recursively define the value of an optimal solution
– Compute the value of an optimal solution in a bottom-

up fashion (using matrix to compute)
– Backtracking to construct an optimal solution from

computed information.

11/3/2016

18

35

Floyd-Warshall algorithm for
shortest path:
 Use a different dynamic-programming

formulation to solve the all-pairs shortest-paths
problem on a directed graph G=(V,E).

 The resulting algorithm, known as the Floyd-
Warshall algorithm, runs in O (V3) time.
– negative-weight edges may be present,
– but we shall assume that there are no negative-

weight cycles.

36

The structure of a shortest path:

 We use a different characterization of the structure of a
shortest path than we used in the matrix-multiplication-
based all-pairs algorithms.

 The algorithm considers the “intermediate” vertices of a
shortest path, where an intermediate vertex of a simple
path p=<v1,v2,…,vl> is any vertex in p other than v1 or vl,
that is, any vertex in the set {v2,v3,…,vl-1}

11/3/2016

19

37

Continue:

 Let the vertices of G be V={1,2,…,n}, and consider a
subset {1,2,…,k} of vertices for some k.

 For any pair of vertices i,j V, consider all paths from i to
j whose intermediate vertices are all drawn from
{1,2,…,k},and let p be a minimum-weight path from
among them.

 The Floyd-Warshall algorithm exploits a relationship
between path p and shortest paths from i to j with all
intermediate vertices in the set {1,2,…,k-1}.

38

Relationship:

 The relationship depends on whether or not k is an
intermediate vertex of path p.

 If k is not an intermediate vertex of path p, then all
intermediate vertices of path p are in the set {1,2,…,k-1}.
Thus, a shortest path from vertex i to vertex j with all
intermediate vertices in the set {1,2,…,k-1} is also a
shortest path from i to j with all intermediate vertices in the
set {1,2,…,k}.

 If k is an intermediate vertex of path p,then we break p
down into i k j as shown Figure 2.p1 is a
shortest path from i to k with all intermediate vertices in
the set {1,2,…,k-1}, so as p2.

 1p 2p

11/3/2016

20

39

i j

kp1 p2

All intermediate vertices in {1,2,…,k-1}

P:all intermediate vertices in {1,2,…,k}

Figure 2. Path p is a shortest path from vertex i to vertex j,and
k is the highest-numbered intermediate vertex of p. Path p1,
the portion of path p from vertex i to vertex k,has all intermediate
vertices in the set {1,2,…,k-1}.The same holds for path p2 from
vertex k to vertex j.

40

A recursive solution to the all-
pairs shortest paths problem:
 Let dij

(k) be the weight of a shortest path from vertex i to
vertex j with all intermediate vertices in the set {1,2,…,k}.
A recursive definition is given by

 dij
(k)= wij if k=0,

 min(dij
(k-1),dik

(k-1)+dkj
(k-1)) if k 1.

 The matrix D(n)=(dij
(n)) gives the final answer-dij

(n)=
for all i,j V-because all intermediate vertices are in the
set {1,2,…,n}.

),(ji

11/3/2016

21

41

Computing the shortest-path
weights bottom up:
 FLOYD-WARSHALL(W)
 n rows[W]
 D(0) W
 for k 1 to n
 do for i 1 to n
 do for j 1 to n
 dij

(k) min(dij
(k-1),dik

(k-1)+dkj
(k-1))

 return D(n)

42

Example:

1

5 4

3

2

3 4

7-4

8

1 -52

 Figure 3

6

11/3/2016

22

43

06
052

04
710
4830

D(0)=

NILNILNILNIL
NILNILNIL
NILNILNILNIL

NILNILNIL
NILNIL

5
44

3
22
111

(0)=

D(1)= (1)=

06
20552

04
710
4830

NILNILNILNIL
NIL

NILNILNILNIL
NILNILNIL

NILNIL

5
1414

3
22
111

44

06
20552

11504
710
44830

D(2)=

NILNILNILNIL
NIL

NILNIL
NILNILNIL

NIL

5
1414
223
22
1211

(2)=

D(3)= (3)=

06
20512

11504
710
44830

NILNILNILNIL
NIL

NILNIL
NILNILNIL

NIL

5
1434
223
22
1211

11/3/2016

23

45

06158
20512

35047
11403
44130

D(4)=

NIL
NIL

NIL
NIL

NIL

5434
1434
1234
1244
1241

(4)=

D(5)= (5)=

06158
20512

35047
11403
42310

NIL
NIL

NIL
NIL

NIL

5434
1434
1234
1244
1543

