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Divide-and-Conquer

The most-well known algorithm design 
strategy:

1. Divide instance of problem into two or 
more smaller instances

2. Solve smaller instances recursively

3. Obtain solution to original (larger) instance 
by combining these solutions

Randomized Algorithm

 An algorithm whose behaviour depends on:
– an input
– a sequence of random bits

 Can be faster and simpler than a 
deterministic (no random bits) algorithm

 Two types:
– Las Vegas
– Monte Carlo
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Las Vegas and Monte Carlo

 Named after famous casinos
 Las Vegas:

– always returns correct answer
– running time fast with a high probability
– “everyone wins in Vegas”

 Monte Carlo:
– always runs fast
– returns correct answer with a high probability

Primality Test

 Fermat’s Little Theorem:
– If n is prime, then for all a in [1,n-1],

• an – a = 0  (mod n)
– E.g. 43 – 4 = 60  is divisible by 3

 First attempt at algorithm:
1. Choose a at random from [2,n-1]
2. If  an – a = 0  (mod n), then return 

COMPOSITE
3. Else return PRIME
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Primality Test

 However, there are exceptions to Fermat’s 
Little Theorem, called the Carmichael 
numbers

 The previous algorithm returns PRIME for 
the Carmichael numbers

 A modification to the algorithm yields the 
Miller-Rabin test, which bounds the 
probability of running into a Carmichael 
number at 0.5

Miller-Rabin – Proof of Bound
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Primality Test

 Algorithm: is n prime?
– NO – if Miller-Rabin returns COMPOSITE
– YES – if Miller-Rabin runs k times without 

returning COMPOSITE

4 -8

The Divide-and-Conquer Strategy
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A simple example
 finding the maximum of a set S of n numbers 

4 -10

 Time complexity:
T(n): # of comparisons

 Calculation of T(n):
Assume n = 2k, 

T(n) = 2T(n/2)+1
= 2(2T(n/4)+1)+1
= 4T(n/4)+2+1

:
=2k-1T(2)+2k-2+…+4+2+1
=2k-1+2k-2+…+4+2+1
=2k-1 = n-1

T(n)= 




 2T(n/2)+1 
1 

, n>2 
, n2 

 

Time complexity
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A general divide-and-conquer 
algorithm
Step 1: If the problem size is small, solve this           

problem directly; otherwise, split the           original 
problem into 2 sub-problems           with equal 
sizes.

Step 2: Recursively solve these 2 sub-problems           
by applying this algorithm.

Step 3: Merge the solutions of the 2 sub-
problems into a solution of the original           
problem.

4 -12

Time complexity of the general 
algorithm
 Time complexity:

where S(n) : time for splitting
M(n) : time for merging

b : a constant
c : a constant

T(n)= 




 2T(n/2)+S(n)+M(n) 
b 

, n  c 
, n < c 
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Binary search

 e.g. 2 4 5 6 7 8 9





search 7: needs 3 comparisons
 time: O(log n)
 The binary search can be used only if the elements 

are sorted and stored in an array.

4 -14

Algorithm binary-search

Input: A sorted sequence of n elements stored in an array.
Output: The position of x (to be searched).
Step 1: If only one element remains in the array, solve it 

directly.
Step 2: Compare x with the middle element of the array.
Step 2.1: If x = middle element, then output it and stop.
Step 2.2: If x < middle element, then recursively solve the 

problem with x and the left half array.
Step 2.3: If x > middle element, then recursively solve the 

problem with x and the right half array.
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Algorithm BinSearch(a, low, high, x)
// a[]: sorted sequence in nondecreasing order
// low, high: the bounds for searching in a []
// x: the element to be searched
// If x = a[j], for some j, then return j else return –1
if (low > high) then return –1         // invalid range
if (low = high) then                        // if small P
if (x == a[i]) then return i
else return -1

else             // divide P into two smaller subproblems
mid = (low + high) / 2
if (x == a[mid]) then return mid
else if (x < a[mid]) then

return BinSearch(a, low, mid-1, x)
else return BinSearch(a, mid+1, high, x)

Quick Sort
 Small instance has n <= 1. Every small instance is a 

sorted instance.
 To sort a large instance, select a pivot element from out 

of the n elements.
 Partition the n elements into 3 groups left, middle and 

right.
 The middle group contains only the pivot element.
 All elements in the left group are <= pivot.
 All elements in the right group are >= pivot.
 Sort left and right groups recursively.
 Answer is sorted left group, followed by middle group 

followed by sorted right group.
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Example
6 2 8 5 11 10 4 1 9 7 3

Use 6 as the pivot.

2 85 11104 1 973 6

Sort left and right groups recursively.

Choice Of Pivot

 Pivot is leftmost element in list that is to be sorted.
 When sorting a[6:20], use a[6] as the pivot.
 Text implementation does this.

 Randomly select one of the elements to be sorted 
as the pivot.
 When sorting a[6:20], generate a random number r in 

the range [6, 20]. Use a[r] as the pivot.
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Choice Of Pivot
 Median-of-Three rule. From the leftmost, middle, 

and rightmost elements of the list to be sorted, 
select the one with median key as the pivot.
 When sorting a[6:20], examine a[6], a[13] ((6+20)/2),

and a[20]. Select the element with median (i.e., middle) 
key.
 If a[6].key = 30, a[13].key = 2, and a[20].key = 10, 

a[20] becomes the pivot.
 If a[6].key = 3, a[13].key = 2, and a[20].key = 10, a[6] 

becomes the pivot.

Choice Of Pivot
 If a[6].key = 30, a[13].key = 25, and a[20].key = 10, 

a[13] becomes the pivot.
 When the pivot is picked at random or when the 

median-of-three rule is used, we can use the quick 
sort code of the text provided we first swap the 
leftmost element and the chosen pivot.

pivot

swap
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Partitioning Into Three Groups

 Sort a = [6, 2, 8, 5, 11, 10, 4, 1, 9, 7, 3].
 Leftmost element (6) is the pivot.
 When another array b is available:
 Scan a from left to right (omit the pivot in this scan), 

placing elements <= pivot at the left end of b and the 
remaining elements at the right end of b. 
 The pivot is placed at the remaining position of the b.

4 -22

Quicksort

 Sort into nondecreasing order

[26   5  37   1  61  11  59  15  48  19]
[26   5  19   1  61  11  59  15  48  37]
[26   5  19   1  15  11  59  61  48  37]
[11   5  19   1  15] 26 [59  61  48  37]
[11   5   1  19  15] 26 [59  61  48  37]
[ 1   5] 11 [19  15] 26 [59  61  48  37]
1   5  11  15  19  26 [59  61  48  37]
1   5  11  15  19  26 [59  37  48  61]
1   5  11  15  19  26 [48  37] 59 [61]
1   5  11  15  19  26  37  48  59  61
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Algorithm Quicksort
Input: A set S of n elements.
Output: The sorted sequence of the inputs in 

nondecreasing order.
Step 1: If |S|2, solve it directly.
Step 2: (Partition step) Use a pivot to scan all 

elements in S. Put the smaller elements in S1, and 
the larger elements in S2.

Step 3: Recursively solve S1 and S2.

4 -24

Time complexity of Quicksort
 time in the worst case:

(n-1)+(n-2)+...+1 = n(n-1)/2= O(n2)
 time in the best case:

In each partition, the problem is always divided 
into two subproblems with almost equal size.

... ...

.
.
.

log2n

n

×2 = nn
2

×4 = nn
4
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Time complexity of the best case
 T(n): time required for sorting n elements
 T(n)≦ cn+2T(n/2), for some constant c.

≦ cn+2(c．n/2 + 2T(n/4))
≦ 2cn + 4T(n/4)

…
≦ cnlog2n + nT(1) = O(nlogn)

3 -26

The Greedy Method
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The knapsack problem

 n objects, each with a weight wi > 0
a profit pi > 0

capacity of knapsack: M 

Maximize
Subject to

0  xi  1, 1  i  n   

p xi i
i n1 


w x Mi i
i n1 
 

3 -28

The knapsack algorithm
 The greedy algorithm: 

Step 1: Sort pi/wi into nonincreasing order. 
Step 2: Put the objects into the knapsack according

to the sorted sequence as possible as we can.
 e. g.

n = 3, M = 20, (p1, p2, p3) = (25, 24, 15) 
(w1, w2, w3) = (18, 15, 10) 
Sol: p1/w1 = 25/18 = 1.39 

p2/w2 = 24/15 = 1.6 
p3/w3 = 15/10 = 1.5 

Optimal solution: x1 = 0, x2 = 1, x3 = 1/2 
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The single-source shortest path 
problem 
 shortest paths from v0 to all destinations

3 -30

Dijkstra’s algorithm

  1 2 3 4 5 6 7 8  
1  0         
2  300 0        
           

3  1000 800 0       
4    1200 0      
5     1500 0 250    
6     1000  0 900 1400  
7        0 1000  
8  1700       0  

 

In the cost adjacency matrix, 
all entries not shown are 
+. 
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3 -31 Time complexity : O(n2), n = |V|.

  Vertex          
Iteration S Selected  (1) (2) (3) (4) (5) (6) (7) (8) 

Initial  ----          
1 5 6  + + + 1500 0 250 + + 
2 5,6 7  + + + 1250 0 250 1150 1650 
3 5,6,7 4  + + + 1250 0 250 1150 1650 
4 5,6,7,4 8  + + 2450 1250 0 250 1150 1650 
5 5,6,7,4,8 3  3350 + 2450 1250 0 250 1150 1650 
6 5,6,7,4,8,3 2  3350 3250 2450 1250 0 250 1150 1650 
 5,6,7,4,8,3,2   3350 3250 2450 1250 0 250 1150 1650 
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Data Structure for SSAD

#define MAX_VERTICES 6
int cost[][MAX_VERTICES]=
{};
int distance[MAX_VERTICES];
short int found{MAX_VERTICES];
int n = MAX_VERTICES;

adjacency matrix
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shortest()
Void shortestpath(int v, int cost[][MAX_VERTICES], int dist [], int n, int found[])
{

int i,u,w;
for (i=0;i<n;i++) {

found[i]=FALSE;
dist [i] = cost[v][i];

}
found[v]=TRUE;
dist [v]=0;
for(i=0;i<n-2;i++){

u=choose(dist,n,found);
found[u]=TRUE;
for(w=0;w<n;w++)

if(dist [u]+cost[u][w] < dist [w])
dist [w] = dist [u]+cost[u][w];

}
}

O(n2)

34

Dynamic programming algorithms for all-pairs 
shortest path
 We will study a new technique—dynamic programming 

algorithms (typically for optimization problems)
 Ideas:

– Characterize the structure of an optimal solution
– Recursively define the value of an optimal solution
– Compute the value of an optimal solution in a bottom-

up fashion (using matrix to compute)
– Backtracking to construct an optimal solution from 

computed information.
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Floyd-Warshall algorithm for 
shortest path:
 Use  a different dynamic-programming 

formulation to solve the all-pairs shortest-paths 
problem on a directed graph G=(V,E).

 The resulting algorithm, known as the  Floyd-
Warshall algorithm, runs in  O (V3) time. 
– negative-weight edges may be present, 
– but we shall assume that there are no negative-

weight cycles.

36

The structure of a shortest path:

 We use a different characterization of the structure of a 
shortest path than we used in the matrix-multiplication-
based all-pairs algorithms.

 The algorithm considers the “intermediate” vertices of a 
shortest path, where an intermediate vertex of a simple 
path p=<v1,v2,…,vl> is any vertex in p other than v1 or vl, 
that is, any vertex in the set {v2,v3,…,vl-1}
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Continue:

 Let the vertices of G be V={1,2,…,n}, and consider a 
subset {1,2,…,k} of vertices for some k. 

 For any pair of vertices i,j  V, consider all paths from i to 
j whose intermediate vertices are all drawn from 
{1,2,…,k},and let p be a minimum-weight path from 
among them.

 The Floyd-Warshall algorithm exploits a relationship 
between path p and shortest paths from i to j with all 
intermediate vertices in the set {1,2,…,k-1}.

38

Relationship:

 The relationship depends on whether or not k is an 
intermediate vertex of path p.

 If k is not an intermediate vertex of path p, then all 
intermediate vertices of path p are in the set {1,2,…,k-1}. 
Thus, a shortest path from vertex i to vertex j with all 
intermediate vertices in the set {1,2,…,k-1} is also a 
shortest path from i to j with all intermediate vertices in the 
set {1,2,…,k}.

 If k is an intermediate vertex of path p,then we break p 
down into i               k                j as shown Figure 2.p1 is a 
shortest path from i to k with all intermediate vertices in 
the set {1,2,…,k-1}, so as p2.

 1p  2p
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i j

kp1 p2

All intermediate vertices in {1,2,…,k-1}

P:all intermediate vertices in {1,2,…,k}

Figure 2.  Path p is a shortest path from vertex i to vertex j,and
k is the highest-numbered intermediate vertex of p. Path p1, 
the portion of path p from vertex i to vertex k,has all intermediate
vertices in the set {1,2,…,k-1}.The same holds for path p2 from
vertex k to vertex j.

40

A recursive solution to the all-
pairs shortest paths problem:
 Let dij

(k) be the weight of a shortest path from vertex i to 
vertex j with all intermediate vertices in the set {1,2,…,k}. 
A recursive definition is given by

 dij
(k)=     wij if k=0,

 min(dij
(k-1),dik

(k-1)+dkj
(k-1))          if k   1.

 The matrix D(n)=(dij
(n)) gives the final answer-dij

(n)=           
for all i,j     V-because all intermediate vertices are in the 
set {1,2,…,n}.

 

),( ji
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Computing the shortest-path 
weights bottom up:
 FLOYD-WARSHALL(W)
 n           rows[W]
 D(0)              W
 for k 1 to n
 do for i         1 to n
 do for j         1 to n
 dij

(k) min(dij
(k-1),dik

(k-1)+dkj
(k-1))

 return D(n)           
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Example:

1

5 4

3

2

3 4

7-4

8

1 -52

 Figure 3

6
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