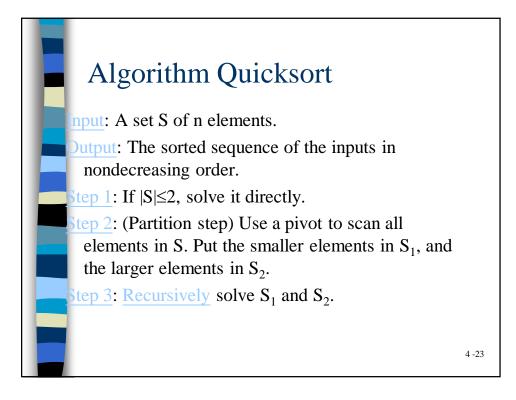
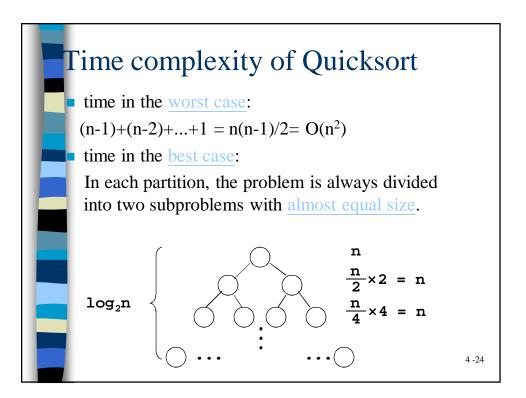
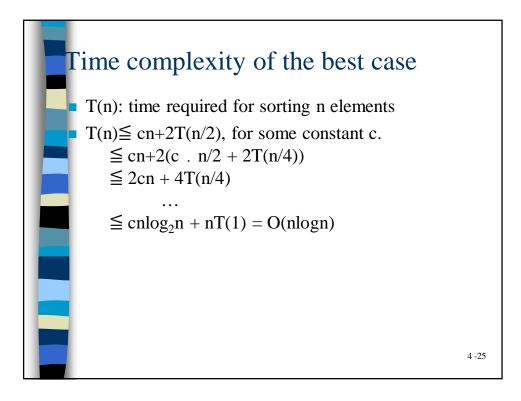
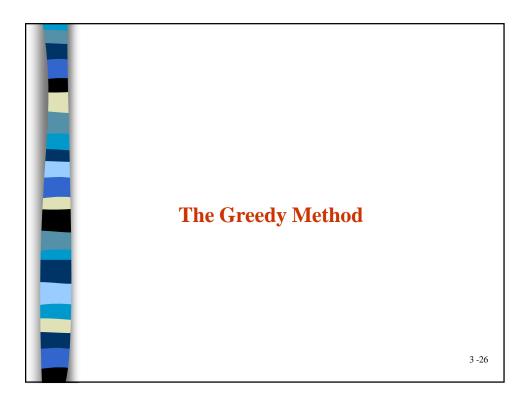


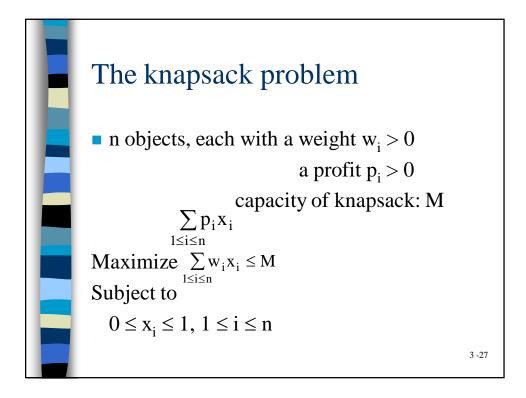
Quicksort											
Sort into nondecreasing order											
	[26	5	37	1	61	11	59	15	48	19]	
	[26	5	19	1	61	11	59	15	48	37]	
	[26	5	19	1	15	11	5 9	61	48	37]	
	[11	5	19	1	15]	26	[59	61	48	37]	
	[11	5	1	19	15]	26	[59	61	48	37]	
	[1	5]	11	[19	15]	26	[59	61	48	37]	
	1	5	11	15	19	26	[59	61	48	37]	
	1	5	11	15	19	26	[59	37	48	61]	
	1	5	11	15	19	26	[48	37]	5 9	[61]	
	1	5	11	15	19	26	37	48	5 9	61	
										4 -22	

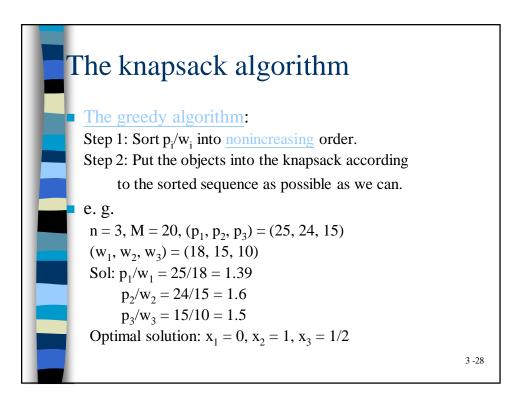


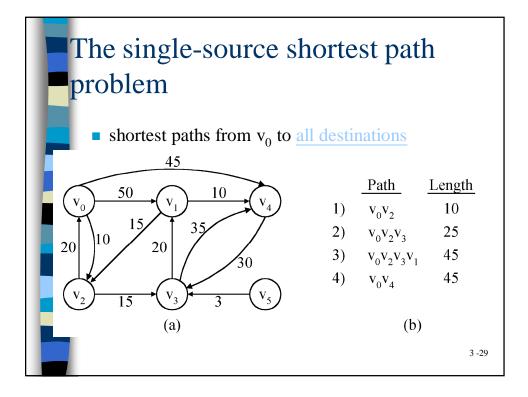


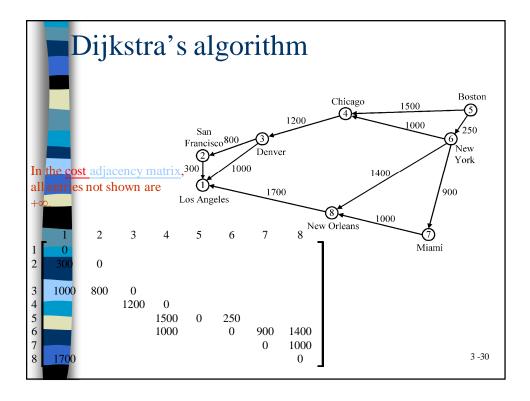


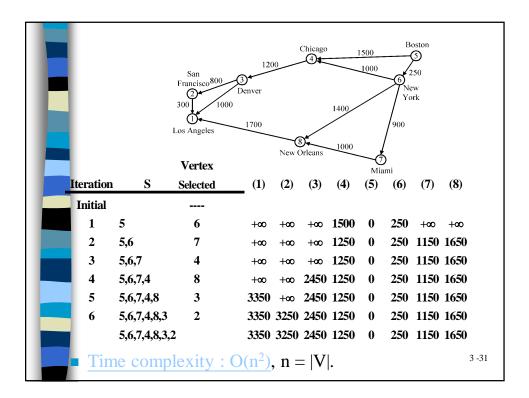


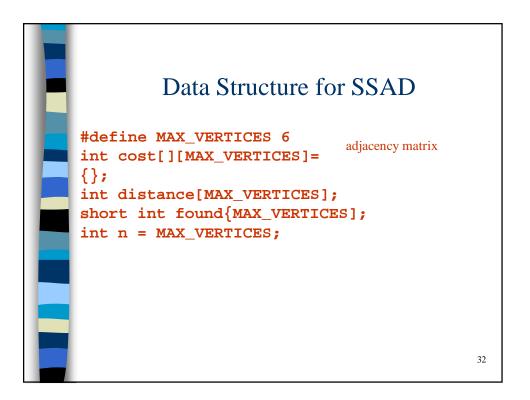


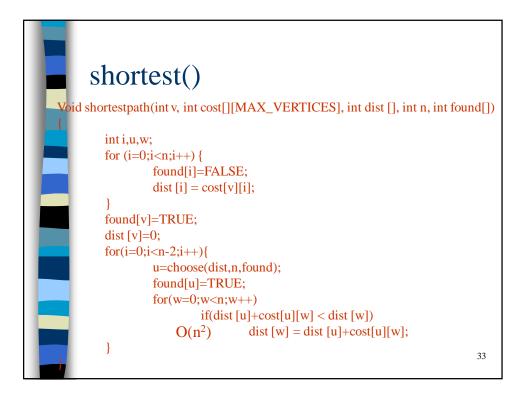


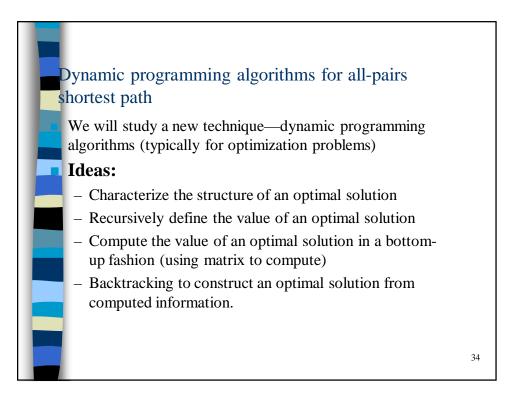


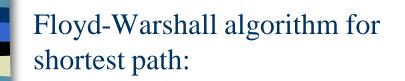






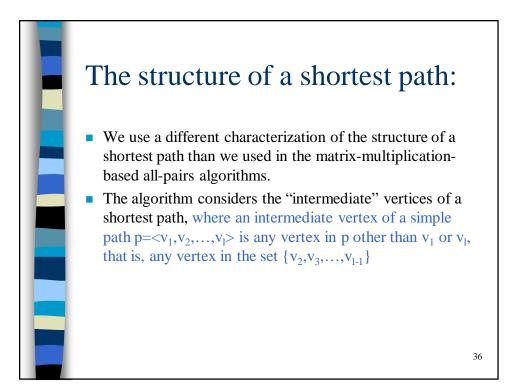


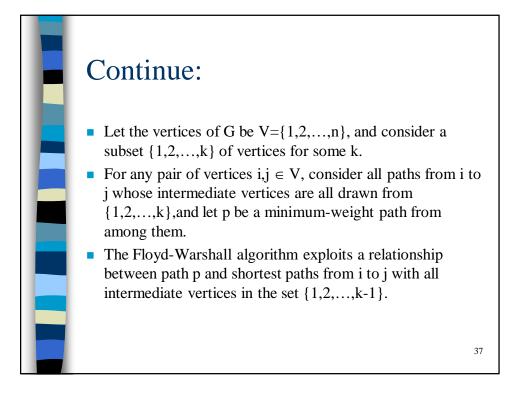


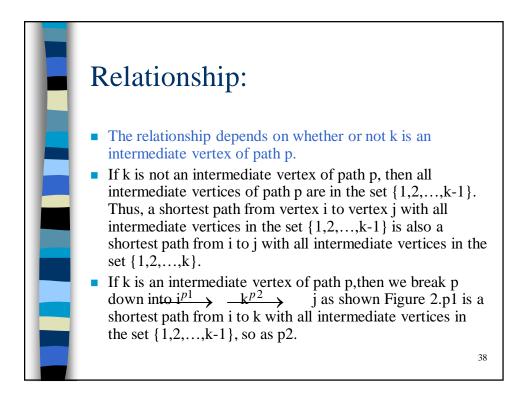


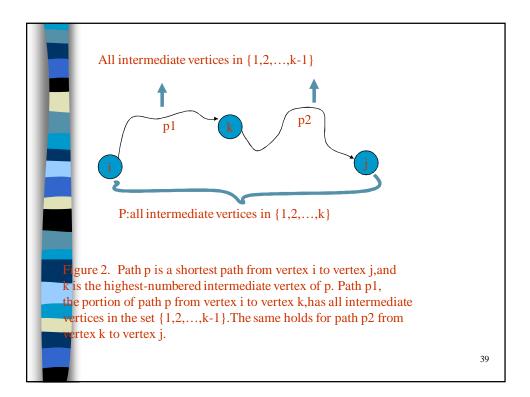
- Use a different dynamic-programming formulation to solve the all-pairs shortest-paths problem on a directed graph G=(V,E).
- The resulting algorithm, known as the Floyd-Warshall algorithm, runs in O (V³) time.
 - negative-weight edges may be present,
 - but we shall assume that there are no negativeweight cycles.

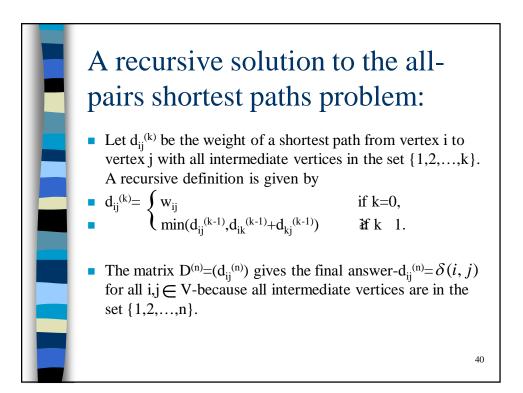
35

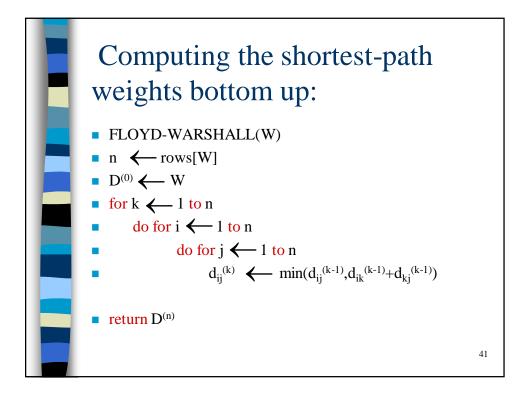


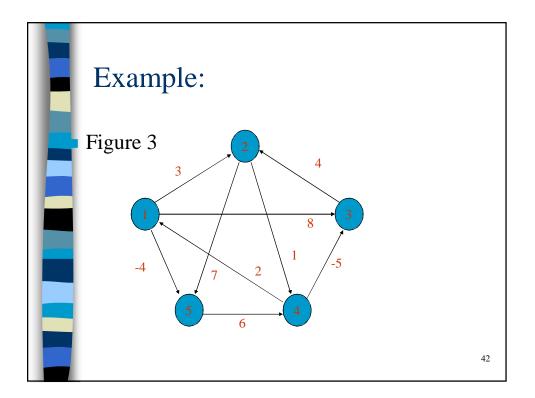












$\mathbf{D}(0) = \begin{pmatrix} 0 \\ \infty \\ \infty \\ 2 \\ \infty \end{pmatrix}$	3 0 4 ∞ ∞	$8 \\ \infty \\ 0 \\ -5 \\ \infty$	∞ 1 ∞ 0 6	$\begin{pmatrix} -4 \\ 7 \\ \infty \\ \infty \\ 0 \end{pmatrix}$	∏ (0)=	NIL NIL NIL 4 NIL	1 NIL 3 NIL NIL	1 NIL NIL 4 NIL	NIL 2 NIL NIL 5	1 2 NIL NIL NIL)
$D(1) = \begin{pmatrix} 0 \\ \infty \\ \infty \\ 2 \\ \infty \end{pmatrix}$	3 0 4 5 ∞	$8 \\ \infty \\ 0 \\ -5 \\ \infty$	∞ 1 ∞ 0 6	$\begin{pmatrix} -4\\7\\\infty\\-2\\0 \end{pmatrix}$	∏(1)=	NIL NIL NIL A NIL	1 NIL 3 1 NIL	1 NIL A NIL	NIL 2 NIL 5	1 2 <i>NIL</i> 1 <i>NIL</i>) 43

$D(2) = \begin{pmatrix} 0 & 3 & 8 & 4 & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & 5 & 11 \\ 2 & 5 & -5 & 0 & -2 \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix}$	$\prod (2) = \begin{pmatrix} NIL \\ NIL \\ NIL \\ 4 \\ NIL \end{pmatrix}$	1 NIL 3 1 NIL	1 NIL NIL 4 NIL	2 2 2 <i>NIL</i> 5	1 2 2 1 <i>NIL</i>)
$D(3) = \begin{pmatrix} 0 & 3 & 8 & 4 & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & 5 & 11 \\ 2 & -1 & -5 & 0 & -2 \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix}$	$\prod(3) = \begin{pmatrix} NIL \\ NIL \\ NIL \\ 4 \\ NIL \end{pmatrix}$	1 NIL 3 3 NIL	1 NIL NIL 4 NIL	2 2 2 <i>NIL</i> 5	1 2 2 1 <i>NIL</i>) 44

