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Divide-and-Conquer

The most-well known algorithm design 
strategy:

1. Divide instance of problem into two or 
more smaller instances

2. Solve smaller instances recursively

3. Obtain solution to original (larger) instance 
by combining these solutions

Randomized Algorithm

 An algorithm whose behaviour depends on:
– an input
– a sequence of random bits

 Can be faster and simpler than a 
deterministic (no random bits) algorithm

 Two types:
– Las Vegas
– Monte Carlo
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Las Vegas and Monte Carlo

 Named after famous casinos
 Las Vegas:

– always returns correct answer
– running time fast with a high probability
– “everyone wins in Vegas”

 Monte Carlo:
– always runs fast
– returns correct answer with a high probability

Primality Test

 Fermat’s Little Theorem:
– If n is prime, then for all a in [1,n-1],

• an – a = 0  (mod n)
– E.g. 43 – 4 = 60  is divisible by 3

 First attempt at algorithm:
1. Choose a at random from [2,n-1]
2. If  an – a = 0  (mod n), then return 

COMPOSITE
3. Else return PRIME
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Primality Test

 However, there are exceptions to Fermat’s 
Little Theorem, called the Carmichael 
numbers

 The previous algorithm returns PRIME for 
the Carmichael numbers

 A modification to the algorithm yields the 
Miller-Rabin test, which bounds the 
probability of running into a Carmichael 
number at 0.5

Miller-Rabin – Proof of Bound
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Primality Test

 Algorithm: is n prime?
– NO – if Miller-Rabin returns COMPOSITE
– YES – if Miller-Rabin runs k times without 

returning COMPOSITE

4 -8

The Divide-and-Conquer Strategy
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A simple example
 finding the maximum of a set S of n numbers 

4 -10

 Time complexity:
T(n): # of comparisons

 Calculation of T(n):
Assume n = 2k, 

T(n) = 2T(n/2)+1
= 2(2T(n/4)+1)+1
= 4T(n/4)+2+1

:
=2k-1T(2)+2k-2+…+4+2+1
=2k-1+2k-2+…+4+2+1
=2k-1 = n-1

T(n)= 




 2T(n/2)+1 
1 

, n>2 
, n2 

 

Time complexity
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A general divide-and-conquer 
algorithm
Step 1: If the problem size is small, solve this           

problem directly; otherwise, split the           original 
problem into 2 sub-problems           with equal 
sizes.

Step 2: Recursively solve these 2 sub-problems           
by applying this algorithm.

Step 3: Merge the solutions of the 2 sub-
problems into a solution of the original           
problem.

4 -12

Time complexity of the general 
algorithm
 Time complexity:

where S(n) : time for splitting
M(n) : time for merging

b : a constant
c : a constant

T(n)= 




 2T(n/2)+S(n)+M(n) 
b 

, n  c 
, n < c 
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Binary search

 e.g. 2 4 5 6 7 8 9





search 7: needs 3 comparisons
 time: O(log n)
 The binary search can be used only if the elements 

are sorted and stored in an array.

4 -14

Algorithm binary-search

Input: A sorted sequence of n elements stored in an array.
Output: The position of x (to be searched).
Step 1: If only one element remains in the array, solve it 

directly.
Step 2: Compare x with the middle element of the array.
Step 2.1: If x = middle element, then output it and stop.
Step 2.2: If x < middle element, then recursively solve the 

problem with x and the left half array.
Step 2.3: If x > middle element, then recursively solve the 

problem with x and the right half array.
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Algorithm BinSearch(a, low, high, x)
// a[]: sorted sequence in nondecreasing order
// low, high: the bounds for searching in a []
// x: the element to be searched
// If x = a[j], for some j, then return j else return –1
if (low > high) then return –1         // invalid range
if (low = high) then                        // if small P
if (x == a[i]) then return i
else return -1

else             // divide P into two smaller subproblems
mid = (low + high) / 2
if (x == a[mid]) then return mid
else if (x < a[mid]) then

return BinSearch(a, low, mid-1, x)
else return BinSearch(a, mid+1, high, x)

Quick Sort
 Small instance has n <= 1. Every small instance is a 

sorted instance.
 To sort a large instance, select a pivot element from out 

of the n elements.
 Partition the n elements into 3 groups left, middle and 

right.
 The middle group contains only the pivot element.
 All elements in the left group are <= pivot.
 All elements in the right group are >= pivot.
 Sort left and right groups recursively.
 Answer is sorted left group, followed by middle group 

followed by sorted right group.
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Example
6 2 8 5 11 10 4 1 9 7 3

Use 6 as the pivot.

2 85 11104 1 973 6

Sort left and right groups recursively.

Choice Of Pivot

 Pivot is leftmost element in list that is to be sorted.
 When sorting a[6:20], use a[6] as the pivot.
 Text implementation does this.

 Randomly select one of the elements to be sorted 
as the pivot.
 When sorting a[6:20], generate a random number r in 

the range [6, 20]. Use a[r] as the pivot.
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Choice Of Pivot
 Median-of-Three rule. From the leftmost, middle, 

and rightmost elements of the list to be sorted, 
select the one with median key as the pivot.
 When sorting a[6:20], examine a[6], a[13] ((6+20)/2),

and a[20]. Select the element with median (i.e., middle) 
key.
 If a[6].key = 30, a[13].key = 2, and a[20].key = 10, 

a[20] becomes the pivot.
 If a[6].key = 3, a[13].key = 2, and a[20].key = 10, a[6] 

becomes the pivot.

Choice Of Pivot
 If a[6].key = 30, a[13].key = 25, and a[20].key = 10, 

a[13] becomes the pivot.
 When the pivot is picked at random or when the 

median-of-three rule is used, we can use the quick 
sort code of the text provided we first swap the 
leftmost element and the chosen pivot.

pivot

swap
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Partitioning Into Three Groups

 Sort a = [6, 2, 8, 5, 11, 10, 4, 1, 9, 7, 3].
 Leftmost element (6) is the pivot.
 When another array b is available:
 Scan a from left to right (omit the pivot in this scan), 

placing elements <= pivot at the left end of b and the 
remaining elements at the right end of b. 
 The pivot is placed at the remaining position of the b.

4 -22

Quicksort

 Sort into nondecreasing order

[26   5  37   1  61  11  59  15  48  19]
[26   5  19   1  61  11  59  15  48  37]
[26   5  19   1  15  11  59  61  48  37]
[11   5  19   1  15] 26 [59  61  48  37]
[11   5   1  19  15] 26 [59  61  48  37]
[ 1   5] 11 [19  15] 26 [59  61  48  37]
1   5  11  15  19  26 [59  61  48  37]
1   5  11  15  19  26 [59  37  48  61]
1   5  11  15  19  26 [48  37] 59 [61]
1   5  11  15  19  26  37  48  59  61
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Algorithm Quicksort
Input: A set S of n elements.
Output: The sorted sequence of the inputs in 

nondecreasing order.
Step 1: If |S|2, solve it directly.
Step 2: (Partition step) Use a pivot to scan all 

elements in S. Put the smaller elements in S1, and 
the larger elements in S2.

Step 3: Recursively solve S1 and S2.

4 -24

Time complexity of Quicksort
 time in the worst case:

(n-1)+(n-2)+...+1 = n(n-1)/2= O(n2)
 time in the best case:

In each partition, the problem is always divided 
into two subproblems with almost equal size.

... ...

.
.
.

log2n

n

×2 = nn
2

×4 = nn
4
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Time complexity of the best case
 T(n): time required for sorting n elements
 T(n)≦ cn+2T(n/2), for some constant c.

≦ cn+2(c．n/2 + 2T(n/4))
≦ 2cn + 4T(n/4)

…
≦ cnlog2n + nT(1) = O(nlogn)

3 -26

The Greedy Method
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The knapsack problem

 n objects, each with a weight wi > 0
a profit pi > 0

capacity of knapsack: M 

Maximize
Subject to

0  xi  1, 1  i  n   

p xi i
i n1 


w x Mi i
i n1 
 

3 -28

The knapsack algorithm
 The greedy algorithm: 

Step 1: Sort pi/wi into nonincreasing order. 
Step 2: Put the objects into the knapsack according

to the sorted sequence as possible as we can.
 e. g.

n = 3, M = 20, (p1, p2, p3) = (25, 24, 15) 
(w1, w2, w3) = (18, 15, 10) 
Sol: p1/w1 = 25/18 = 1.39 

p2/w2 = 24/15 = 1.6 
p3/w3 = 15/10 = 1.5 

Optimal solution: x1 = 0, x2 = 1, x3 = 1/2 
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The single-source shortest path 
problem 
 shortest paths from v0 to all destinations

3 -30

Dijkstra’s algorithm

  1 2 3 4 5 6 7 8  
1  0         
2  300 0        
           

3  1000 800 0       
4    1200 0      
5     1500 0 250    
6     1000  0 900 1400  
7        0 1000  
8  1700       0  

 

In the cost adjacency matrix, 
all entries not shown are 
+. 
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3 -31 Time complexity : O(n2), n = |V|.

  Vertex          
Iteration S Selected  (1) (2) (3) (4) (5) (6) (7) (8) 

Initial  ----          
1 5 6  + + + 1500 0 250 + + 
2 5,6 7  + + + 1250 0 250 1150 1650 
3 5,6,7 4  + + + 1250 0 250 1150 1650 
4 5,6,7,4 8  + + 2450 1250 0 250 1150 1650 
5 5,6,7,4,8 3  3350 + 2450 1250 0 250 1150 1650 
6 5,6,7,4,8,3 2  3350 3250 2450 1250 0 250 1150 1650 
 5,6,7,4,8,3,2   3350 3250 2450 1250 0 250 1150 1650 

 

32

Data Structure for SSAD

#define MAX_VERTICES 6
int cost[][MAX_VERTICES]=
{};
int distance[MAX_VERTICES];
short int found{MAX_VERTICES];
int n = MAX_VERTICES;

adjacency matrix
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shortest()
Void shortestpath(int v, int cost[][MAX_VERTICES], int dist [], int n, int found[])
{

int i,u,w;
for (i=0;i<n;i++) {

found[i]=FALSE;
dist [i] = cost[v][i];

}
found[v]=TRUE;
dist [v]=0;
for(i=0;i<n-2;i++){

u=choose(dist,n,found);
found[u]=TRUE;
for(w=0;w<n;w++)

if(dist [u]+cost[u][w] < dist [w])
dist [w] = dist [u]+cost[u][w];

}
}

O(n2)

34

Dynamic programming algorithms for all-pairs 
shortest path
 We will study a new technique—dynamic programming 

algorithms (typically for optimization problems)
 Ideas:

– Characterize the structure of an optimal solution
– Recursively define the value of an optimal solution
– Compute the value of an optimal solution in a bottom-

up fashion (using matrix to compute)
– Backtracking to construct an optimal solution from 

computed information.
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Floyd-Warshall algorithm for 
shortest path:
 Use  a different dynamic-programming 

formulation to solve the all-pairs shortest-paths 
problem on a directed graph G=(V,E).

 The resulting algorithm, known as the  Floyd-
Warshall algorithm, runs in  O (V3) time. 
– negative-weight edges may be present, 
– but we shall assume that there are no negative-

weight cycles.

36

The structure of a shortest path:

 We use a different characterization of the structure of a 
shortest path than we used in the matrix-multiplication-
based all-pairs algorithms.

 The algorithm considers the “intermediate” vertices of a 
shortest path, where an intermediate vertex of a simple 
path p=<v1,v2,…,vl> is any vertex in p other than v1 or vl, 
that is, any vertex in the set {v2,v3,…,vl-1}
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Continue:

 Let the vertices of G be V={1,2,…,n}, and consider a 
subset {1,2,…,k} of vertices for some k. 

 For any pair of vertices i,j  V, consider all paths from i to 
j whose intermediate vertices are all drawn from 
{1,2,…,k},and let p be a minimum-weight path from 
among them.

 The Floyd-Warshall algorithm exploits a relationship 
between path p and shortest paths from i to j with all 
intermediate vertices in the set {1,2,…,k-1}.

38

Relationship:

 The relationship depends on whether or not k is an 
intermediate vertex of path p.

 If k is not an intermediate vertex of path p, then all 
intermediate vertices of path p are in the set {1,2,…,k-1}. 
Thus, a shortest path from vertex i to vertex j with all 
intermediate vertices in the set {1,2,…,k-1} is also a 
shortest path from i to j with all intermediate vertices in the 
set {1,2,…,k}.

 If k is an intermediate vertex of path p,then we break p 
down into i               k                j as shown Figure 2.p1 is a 
shortest path from i to k with all intermediate vertices in 
the set {1,2,…,k-1}, so as p2.

 1p  2p
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i j

kp1 p2

All intermediate vertices in {1,2,…,k-1}

P:all intermediate vertices in {1,2,…,k}

Figure 2.  Path p is a shortest path from vertex i to vertex j,and
k is the highest-numbered intermediate vertex of p. Path p1, 
the portion of path p from vertex i to vertex k,has all intermediate
vertices in the set {1,2,…,k-1}.The same holds for path p2 from
vertex k to vertex j.

40

A recursive solution to the all-
pairs shortest paths problem:
 Let dij

(k) be the weight of a shortest path from vertex i to 
vertex j with all intermediate vertices in the set {1,2,…,k}. 
A recursive definition is given by

 dij
(k)=     wij if k=0,

 min(dij
(k-1),dik

(k-1)+dkj
(k-1))          if k   1.

 The matrix D(n)=(dij
(n)) gives the final answer-dij

(n)=           
for all i,j     V-because all intermediate vertices are in the 
set {1,2,…,n}.

 

),( ji

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Computing the shortest-path 
weights bottom up:
 FLOYD-WARSHALL(W)
 n           rows[W]
 D(0)              W
 for k 1 to n
 do for i         1 to n
 do for j         1 to n
 dij

(k) min(dij
(k-1),dik

(k-1)+dkj
(k-1))

 return D(n)           









42

Example:

1

5 4

3

2

3 4

7-4

8

1 -52

 Figure 3

6
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