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UNIT-IV 
 

    Software NHPP Models 
 

Although some basic and advanced Markov models are presented in the previous 

sections, some NHPP models are mentioned here due to their significant impact 

on the software  reliability  analysis.  Such  a model  simply  models  the failure 

occurrence  rate  as  a  function  of time  (see  e.g.,  Section  2.4).  Hopefully  this 

occurrence  rate is decreasing  when faults are removed  as an effect of debussing. 

Note that after the release, the failure occurrence rate should be a constant unless 

the debugging is continued (Yang & Xie, 2000). 
 

 
 

4.5.1.     The Goel-Okumoto (GO) model 
 

In  1979,  Goel  and  Okumoto  presented  a simple  model  for the description  of 

software failure process by assuming that the cumulative failure process is NHPP 

with a simple mean value function.  Although NHPP models have been studied 

before,  see e.g. Schneidewind  (1975),  the GO-model  is the basic NHPP model 

that later has had a strong influence on the software reliability modeling history. 
 

 
 

Model description 
 

The general assumptions of the GO-model are 
 

1) The cumulative  number  of faults  detected  at time t follows  a Poisson 

distribution. 

2)  All faults are independent and have the same chance of being detected. 
 

3)  All  detected  faults  are  removed  immediately  and  no  new  faults  are 

introduced. 
 

Specifically,  the GO-model  assumes  that the failure  process  is modeled  by an 

NHPP model with mean value function  m(t)  given by 
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The failure intensity function can be derived by  
 

 
 

where a and b are positive constant. Note that  The physical meaning 

of  parameter a  can be  explained as  the expected number of faults  which  are 

eventually detected. The quantity b can be interpreted as the failure occurrence 

rate per fault. 
 

The expected number of remaining faults at time t can be calculated as 
 

 
 

The GO-model has a simple but interesting interpretation based on a model 

for fault detection process. Suppose that the expected number of faults detected in 

a time interval   is proportional to the number of remaining faults, we 

have that 
 

 
 

where b is a constant of proportionality. 
 

The  above  difference  equation  can  be  transformed  into  a  differential 

equation. Divide both sides by  and take limits by letting  tend to zero, 

we get the following equation, 
 

 
 

It can be shown that the solution of this differential equation, together with the 

initial condition m(0)  = 0, lead to the mean value function of the GO-model. 
 

Note  that   both   the   GO-model  and  JM-model  give   the  exponentially 

decreasing number of remaining faults. It can be shown that these two models 

cannot be distinguished using only one realization from each model. However, 

the models are different because the JM-model assumes a discrete change of the 

failure intensity at the time of the removal of a fault while the GO-model assumes 

a continuous failure intensity function over the whole time domain.
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Parameter estimation 
 

Denoted by   the number of faults detected  in time interval   where 

  and    are  the  running  times  since  the  software  testing 

begins.  The  estimation  of  model  parameters  a  and  b  can  be  carried  out  by 

maximizing the likelihood function, see e.g. Goel & Okumoto (1979). The 

likelihood function can be reduced to 

 

 
 

Solving this equation to calculate the estimate of b, and then a can be estimated 

as 
 

 
 

Usually, the above two equations has to be solved numerically. It can also be 

shown that the estimates are asymptotically normal and a confidence region can 

easily be established. A numerical example is illustrated below. 
 

 
 

Example 4.5. Suppose a software product is being tested by a group. Each time 

when detecting the failure, it is removed and the time for repair is not computed 

in the test time. The 30 test data of time to failures are recorded in Table 4.4. 
 

Solving  the  likelihood  equations,  we  get  b = 0.0008   and   a = 57.  The 

failure intensity function and the mean value function for this GO model are 

 
 

and  
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4.5.2.     S-shaped NHPP models 
 

The mean value function of the GO-model is exponential-shaped. Based on the 

experience,  it  is observed  that the curve of the cumulative  number of faults  is 

often S-shaped as shown by Fig. 4.8, see e.g. Yamada et al. (1984). 
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This can be explained by the fact that at the beginning of the testing, some 

faults  might  be  “covered”   by  other  faults.  Removing  a  detected  fault  at  the 

beginning does not reduce the failure intensity very much since the same test data 

will still lead to a failure caused by other faults. Another reason of the S-shaped 

behavior is the learning effect as indicated in Yamada et al. (1984). 

 

 
 

Delayed S-shaped NHPP model 
 

The mean value function of the delayed S-shaped NHPP model is 
 

 
 

This is a two-parameter S-shaped curve with parameter a denoting the number of 

faults  to  be  detected   and  b  corresponding   to  a  fault  detection   rate.  The 

corresponding failure intensity function of this delayed S-shaped NHPP model is  

 
 

The expected number of remaining faults at time t is then 
 

 
 

 
 
 

Inflected S-shaped NHPP model 
 

The mean value function of the inflected S-shaped NHPP model is 
 

 
 

In the above a is again the total number of faults to be detected while b and c are 

called the fault detection rate and the inflection factor, respectively. The intensity 

function of this inflected S-shaped NHPP model can easily be derived as
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Given a set of failure data, for both delayed and inflated S-shaped NHPP models, 

numerical  methods  have  to be  used  to solve the likelihood equation  so that 

estimates of the parameters can be obtained. 

 

 
 

4.5.3.     Some other NHPP models 
 

Besides the S-shaped models, there are many other NHPP models that extend the 

GO-model for different specific conditions. 
 
 
 

Duane model 
 

The Duane model assumes that the mean value function satisfies 
 

 
 

In  the   above,        and      are  parameters  which  can  be  estimated  by  using 

collected  failure data.  The mean  value functions with    and different 

  are depicted by the Fig. 4.9. 

It can be noted that when   the Duane NHPP model is reduced to a 

Poisson process whose mean value function is a straight line. In such a case, there 

is no reliability growth. In fact, the Duane model can be used to model both 

reliability growth  and reliability deterioration  which is common 

in hardware systems. 
 

The failure intensity function,           is 
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One of the most important advantages of the Duane model is that if we plot the 

cumulative   number   of  failure   versus   the   cumulative   testing   time   on   a 

log-log-scale, the plotted points tends to be close to a straight line if the model is 

valid. This can be seen from the fact that the relation between   m(t)   and t can be 

rewritten as 

 
 

where  ln   and   Hence, ln m(t)  is a linear function of  ln t and 

due  to  this   linear  relation,  the   parameters      and     may   be   estimated 

graphically  and  the  model validity can easily be  verified.  In fact, this is called 

first-model-validation-then-parameter-estimation  approach (Xie &  Zhao, 1993). 
 

The Duane model gives an infinite failure intensity at time zero. Littlewood 

(1984) proposed a modified Duane model with the mean value function 
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The  parameter k  can  be  interpreted as  the number of faults  eventually to be 

detected. 
 

 
 

Log-power model 
 

Xie & Zhao (1993) presented  a log-power  model.  The mean value function  of 

this model can be written as 

 
 

This model has shown to be useful for software reliability analysis as it is a pure 

reliability  growth model.  It is also easy to use due to its graphical  interpretation. 

The plot of the cumulative number of failures at time t against t+1 will tend to be 

a straight  line on  a log-double-log  scale  if the failures  follow  the  log-power 

model. This can be seen from the following relationship 

 
 

The  slope  of the  fitted  line  gives  an  estimation  of b  and  its  intercept  on  the 

vertical axis gives an estimation of lna. 
 

The failure intensity function of the log-power model can be obtained as 

 

 

 
The failure intensity function  is interesting  from a practical  point of view. The 

log-power  model  is  able  to analyze  both  the case of strictly  decreasing  failure 

intensity and the case of increasing-then-decreasing failure intensity function. For 

example,  if  then   of the above equation  is a monotonic  decreasing 

function  of t;  Otherwise given       is  increasing  if   

and decreasing if  
 

The estimation  of the parameters  a and b is also simple.  Suppose  total n 

failures are detected during the a testing period  (0,T]  and the times to failures
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are ordered by  The maximum likelihood estimation of a 

and b is then given by: 

 

 
 

and 

 

 
 

They can be simply calculated without numerical procedures. 
 
 
 

Musa-Okumoto model 
 

Musa  and Okumoto (1984) is another model  for infinite failures.  This  NHPP 

model is also called the logarithmic Poisson model. The mean value function is 
 

 
 

The failure intensity function is derived as  
 

 
 

Given  a  set  of  failure  time  data    the  maximum  likelihood 

estimates of the parameters are the solutions of the following equations: 

 
 

These equations have to be solved numerically.  


