NETWORK SECURITY

Hash Function.

Dr. Faheem Masoodi
masoodifahim@uok.edu.in

Disclaimer.

This Study material has been compiled purely for Academic purposes without any claim of copyright or ownership to
the contents of this document.

Even though hash functions have many applications in modern cryptography, they
are perhaps best known for the important role they play in the practical use of
digital signatures. In the previous chapter, we have introduced signature schemes
based on the asymmetric algorithms RSA and the discrete logarithm problem. For
all schemes, the length of the plaintext is limited. For instance, in the case of RSA,
the message cannot be larger than the modulus, which is in practice often between
1024 and 3072-bits long. Remember this translates into only 128-384 bytes; most
emails are longer than that. Thus far, we have ignored the fact that in practice the
plaintext x will often be (much) larger than those sizes. The question that arises at
this point is simple: How are we going to efficiently compute signatures of large
messages? An intuitive approach would be similar to the ECB mode for block ci-
phers: Divide the message x into blocks x; of size less than the allowed input size of
the signature algorithm, and sign each block separately, as depicted in Figure 11.1.

| X | X | 3 |
| s | [= | [=

Fig. 11.1 Insecure approach to signing of long messages

However, this approach yields three serious problems:

Problem 1: High Computational Load Digital signatures are based on computa-
tionally intensive asymmetric operations such as modular exponentiations of large
integers. Even if a single operation consumes a small amount of time (and energy,
which is relevant in mobile applications), the signatures of large messages, e.g.,
email attachments or multimedia files, would take too long on current computers.
Furthermore, not only does the signer have to compute the signature, but the verifier
also has to spend a similar amount of time and energy to verify the signature.

Problem 2: Message Overhead Obviously, this naive approach doubles the mes-
sage overhead because not only must the message be sent but also the signature,
which is of the same length in this case. For instance, a 1-MB file must yield an
RSA signature of length 1 MB, so that a total of 2 MB must be transmitted.

Problem 3: Security Limitations This is the most serious problem if we attempi
to sign a long message by signing a sequence of message blocks individually. The
approach shown in Fig. 11.1 leads immediately to new attacks: For instance, Oscar
could remove individual messages and the corresponding signatures, or he could re-
order messages and signatures, or he could reassemble new messages and signatures
out of fragments of previous messages and signatures, etc. Even though an attacker

cannot perform manipulations within an individual block, we do not have protection
for the whole message.

Hence, for performance as well as for security reasons we would like to have one
short signature for a message of arbitrary length. The solution to this problem is
hash functions. If we had a hash function that somehow computes a fingerprint of
the message x, we could perform the signature operation as shown in Figure 11.2

[« [= [=] - [=]

e —

] SIg
[s |

Fig. 11.2 Signing of long messages with a hash function

Assuming we possess such a hash function, we now describe a basic protocol for
a digital signature scheme with a hash function. Bob wants to send a digitally signed
message to Alice.

Basic Protocol for Digital Signatures with a Hash Function:

Alice Bob

z=hx)

5= Sigkpf_e{z}l
(x.s)

7' = h(x)
Ve, 5 (5.2') = true/false

Bob computes the hash of the message v and signs the hash value z with his
private key kprg. On the receiving side, Alice computes the hash value ' of the
received message x. She verifies the signature s with Bob's public key k., g. We
note that both the signature generation and the verification operate on the hash value
z rather than on the message itself. Hence, the hash value represents the message.
The hash is sometimes referred to as the message digest or the fingerprint of the
message.

Before we discuss the security properties of hash functions in the next section,
we can now get a rough feeling for a desirable inpui—output behavior of hash func-
tions: We want to be able to apply a hash function to messages x of any size, and

it is thus desirable that the function h is computationally efficient. Even if we hash
large messages in the range of, say, hundreds of megabyies, it should be relatively
fast to compute. Another desirable property is that the output of a hash function is
of fixed length and independent of the input length. Practical hash functions have
output lengths between 128-512 bits. Finally, the computed fingerprint should be
highly sensitive to all input bits. That means even if we make minor modifications
to the input x, the fingerprint should look very different. This behavior is similar
to that of block ciphers. The properties which we just described are symbolized in
Figure 11.3.

Message message digest
Alvce was beginning io get very tired of e
siming by her sister on the banlk, - .'=I DFDC3494
and having nothing o do. P
| am not a crook. - 0 "I FRO3E223
,.-r‘f
.‘"‘"u
1 am mod & cook. h I AJF44308
.-"JJ

Fig. 11.3 Principal input—output behavior of hash functions

11.2 Security Requirements of Hash Functions

As mentioned in the introduction, unlike all other crypto algorithms we have dealt
with so far, hash functions do not have keys. The question is now whether there are
any special properties needed for a hash function to be “secure”. In fact, we have
to ask ourselves whether hash functions have any impact on the security of an ap-
plication at all since they do not encrypt and they don't have keys. As is often the
case in cryptography, things can be tricky and there are attacks which use weak-
nesses of hash functions. It turns out that there are three central properties which
hash functions need to possess in order to be secure:

l. preimage resistance (Or one-wayness)
2. second preimage resistance (or weak collision resistance)
3. collision resistance (or strong collision resistance)

These three properties are visnalized in Figure 11.4. They are derived in the fol-
lowing.

I =7 1'1=I.'

hix) Filxy) = hix) by)= hixz)
preimage resistance second preimage collision resistance
resistance

Fig. 11.4 The three security properties of hash funciions

11.2.1 Preimage Resistance or One-Wayness

Hash functions need to be one-way: Given a hash output z it must be computation-
ally infeasible to find an input message x such that z = h(x). In other words, given a
fingerprint, we cannot derive a matching message. We demonstrate now why preim-
age resistance is important by means of a fictive protocol in which Bob is encrypting
the message but not the signature, i.e., he transmits the pair:

(ee(x). sige, , (2)).

Here, e;() is a symmetric cipher, e.g., AES, with some symmetric key shared by
Alice and Bob. Let’s assume Bob uses an RSA digital signature, where the signature
is computed as:

5= Sigkp‘_j (z) =24 mod n

The attacker Oscar can use Bob’s public key to compute
5 =z mod n.

If the hash function is nor one-way, Oscar can now compute the message v from
h=!(z) = x. Thus, the symmetric encryption of x is circumvented by the signature,
which leaks the plaintext. For this reason, h(x) should be a one-way function.

In many other applications which make use of hash functions, for instance in key
derivation, it is even more crucial that they are preimage resistant.

11.2.2 Second Preimage Resistance or Weak Collision Resistance

For digital signatures with hash it is essential that two different messages do not
hash to the same value. This means it should be computationally infeasible to create
two different messages x; # x with equal hash values z; = hi{x)) = h(x2) = 2.
We differentiate between two different types of such collisions. In the first case, x;

is given and we try to find x;. This is called second preimage resistance or weak
collision resistance. The second case is given if an attacker is free to choose both
x1 and xz. This is referred to as strong collision resistance and is dealt with in the
subsequent section.

It is easy to see why second preimage resistance is important for the basic
signature with hash scheme that we introduced above. Assume Bob hashes and
signs a message xp. If Oscar is capable of finding a second message x2 such that
hixy) = h(x2). he can run the following substitution attack:

Alice Oscar Bob
Kb 5
P il

e=h(x)
s=sigg, , (2)

[x2.5) {xy.5)

4 substitute

z=h(xz)
ver,,pﬂ_e{s*;}l = true

As we can see, Alice would accept x; as a correct message since the verification
gives her the statement “true”. How can this happen? From a more abstract view-
point, this attack is possible because both signing (by Bob) and verifying (by Alice)
do not happen with the actual message itself, but rather with the hashed version of
it. Hence, if an attacker manages to find a second message with the same fingerprint
(i.e., hash output), signing and verifying are the same for this second message.

The question now is how we can prevent Oscar from finding x>. Ideally, we would
like to have a hash function for which weak collisions do not exist. This is, unfor-
tunately, impossible due to the pigeonhole principle, a more impressive term for
which is Dirichlet's drawer principle. The pigeonhole principle uses a counting ar-
gument in situations like the following: If you are the owner of 100 pigeons but in
your pigeon loop are only 99 holes, at least one pigeonhole will be occupied by 2
birds. Since the output of every hash function has a fixed bit length, say n bit, there
are “only™ 2" possible output values. At the same time, the number of inputs to the
hash functions is infinite so that multiple inputs must hash to the same output value.
In practice, each output value is equally likely for a random input, so that weak
collisions exist for all output values.

Since weak collisions exist in theory, the next best thing we can do is to assure
that they cannot be found in practice. A strong hash function should be designed
such that given x; and h(x) it is impossible to construct x2 such that hix,) = h(xz).
This means there is no analytical attack. However, Oscar can always randomly pick
x2 values, compute their hash values and check whether they are equal to h(x;). This
is similar to an exhaustive key search for a symmetric cipher. In order to prevent this
attack given today’s computers, an output length of n = 80 bit is sufficient. However,
we see in the next section that more powerful attacks exist which force us to use even
longer output bit lengths.

11.2.3 Collision Resistance and the Birthday Attack

We call a hash function collision resistant or strong collision resistant if it is com-
putationally infeasible to find two different inputs x; # x2 with h(x;) = h(x2). This
property is harder to achieve than weak collision resistance since an attacker has two
degrees of freedom: Both messages can be altered to achieve similar hash values.
We show now how Oscar could turn his ability to find collisions into an attack. He
starts with two messages, for instance:

1) = Transfer 510 inte Oscar’'s account
x2 = Transfer 510,000 into Oscar’'s account

He now alters x) and x> at “nonvisible™ locations, e.g., he replaces spaces by tabs,
adds spaces or return signs at the end of the message, etc. This way, the semantics
of the message is unchanged (e.g., for a bank), but the hash value changes for every
version of the message. Oscar continues until the condition h(x;) = h{xz) is fulfilled.
Note that if an attacker has, e.g., 64 locations that he can alter or not, this yields 254
versions of the same message with 2% different hash values. With the two messages,
he can launch the following attack:

Alice Oscar Bob
Kb B
X
_
L= fil:.l:l:]

5= sigy,,, ()

[x2.5) [x).5)

4 substitute

z=hx:)
v&rkm_a{x.z]l = true

This attack assumes that Oscar can trick Bob into signing the message x). This
is, of course, not possible in every situation, but one can imagine scenarios where
Oscar can pose as an innocent party, e.g., an e-commerce vendor on the Internet,
and x, is the purchase order that is generated by Oscar.

As we saw earlier, due to the pigeonhole principle, collisions always exist. The
question is how difficult it is to find them. Our first guess is probably that this is as
difficult as finding second preimages, i.e., if the hash function has an output length of
80 bits, we have to check about 2°" messages. However, it turns out that an attacker
needs only about 2** messages! This is a quite surprising result which is due to the
birthday attack. This attack is based on the birthday paradox, which is a powerful
tool that is often used in cryptanalysis.

It turns out that the following real-world question is closely related to finding
collisions for hash functions: How many people are needed at a party such that
there is a reasonable chance that at least two people have the same birthday? By

birthday we mean any of the 365 days of the year. Our intuition might lead us to
assume that we need around 183 people (i.e., about half the number of days in a
year) for a collision to occur. However, it tums out that we need far fewer people.
The piecewise approach to solve this problem is to first compute the probability of
two people not having the same birthday, i.e., having no collision of their birthdays.
For one person, the probability of no collision is 1, which is trivial since a single
birthday cannot collide with anyvone else’s. For the second person, the probability
of no collision is 364 over 3635, since there is only one day, the birthday of the first
person, to collide with:

1
P Ilisi 2 le)=|1——
(no collision among 2 people) (3&5)
If a third person joins the party, he or she can collide with both of the people already
there, hence:

P(no collision among 3 people) = (l - %) - (] - i)

Consequently, the probability for 1 people having no birthday collision is given by:

- 1 2 t—1
P(no collision among 1 people) = (1— E) . (l — E) (1_ E)

For 1 = 366 people we will have a collision with probability 1 since a year has only
365 days. We return now to our inifial question: how many people are needed to
have a 50% chance of two colliding birthdays? Surprisingly—following from the
equations above—it only requires 23 people to obtain a probability of about 0.5 for
a birthday collision since:

P(at least one collision) = 1 — P(no collision)

1 231
—“(“ﬁ)"'("ﬁ)

= 0.507 = 50

Mote that for 40 people the probability is about 90%. Due to the surprising outcome
of this gedankenexperiment, it is often referred to as the birthday paradox.

Collision search for a hash function h() is exactly the same problem as finding
birthday collisions among party attendees. For a hash function there are not 365
values each element can take but 2", where n is the output width of k(). In fact, it
turns out that n is the crucial security parameter for hash functions. The guestion is
how many messages (x;.x2.....x) does Oscar need to hash until he has a reasonable
chance that h(x;) = h(x;) for some x; and x; that he picked. The probability for no
collisions among ¢ hash values is:

P(no collision) = (]_zln) (l_;—") (] B .';I])

We recall from our calculus courses that the approximation
e el —x,

holds! since i/2" << 1. We can approximate the probability as:

P(no collision) = Hf_i'

The arithmetic series
1424+ r—1=1(r—1)/2,

i in the exponent, which allows us to write the probability approximation as

P(no collision) == e_"&?'-’"l.

Recall that our goal is to find out how many messages (x;.x2.....x) are needed to
find a collision. Hence, we solve the equation now for r. If we denote the probability
of at least one collision by A = 1 — P(no collision), then

A= l—e_lr'jr_'_rj’l

tHr—1)
2n+l

r{r—]}::::Z”""ln(]_ll).

Since in practice f > 1, it holds that 1* = t(r — 1) and thus:

1
o H‘+|
I Jﬁ In(]_l)

t o= 202 g (ﬁ) (11.1)

In{1—24) =~ —

Equation (11.1) is extremely important: it describes the relationship between the
number of hashed messages 1 needed for a collision as a function of the hash output
length n and the collision probability A. The most important consequence of the
birthday attack is that the number of messages we need to hash to find a colli-
sion is roughly equal to the square root of the number of possible output values,
i.e., about v"}!._‘ =22 Hence, for a security level (cf. Section 6.2.4) of x bit, the
hash function needs to have an output length of 2x bit. As an example, assume we
want to find a collision for a hypothetical hash function with 80-bit output. For a
success probability of 50%, we expect to hash about:

t =282 /In(1/(1-0.5)) = 2402

input values. Computing around 2% hashes and checking for collisions can be done
with current laptops! In order to thwart collision attacks based on the birthday para-
dox, the output length of a hash function must be about twice as long as an output
length which protects merely against a second preimage attack. For this reason,
all hash functions have an output length of at least 128 bit, where most modern
ones are much longer. Table 11.1 shows the number of hash computations needed
for a birthday-paradox collision for output lengths found in current hash functions.
Interestingly, the desired likelihood of a collision does not influence the attack com-
plexity very much, as is evidenced by the small difference between the success
probabilities A = 0.5 and A = 0.9. It should be stressed that the birthday attack is a

Table 11.1 Number of hash values needed for a collision for different hash function output lengths
and for two different collision likelihoods

Hash output length
i 128 bit 160 bit 256 bit 3¥4 bit 512 bit
0.9 767 282 5130 7194 5258

generic attack. This means it is applicable against any hash function. On the other
hand, it is not guaranteed that it is the most powerful attack available for a given
hash function. As we will see in the next section, for some of the most popular hash
functions, in particular MD35 and SHA-1, mathematical collision attacks exist which
are faster than the birthday attack.

It should be stressed that there are many applications for hash functions, e.g.,
storage of passwords, which only require preimage resistance. Thus, a hash function
with a relatively short output, say 80 bit, might be sufficient since collision attacks
do not pose a threat.

At the end of this section we summarize all important properties of hash functions
h(x). Note that the first three are practical requirements, whereas the last three relate
to the security of hash functions.

Properties of Hash Functions

. Arbitrary message size h(x) can be applied to messages x of any size.

. Fixed output length h{x) produces a hash value 7 of fixed length.

. Efficiency h(x) is relatively easy to compute.

. Preimage resistance For a given output z, it is impossible o find any

input x such that i{x) = z, i.e, h(x) is one-way.

5. Second preimage resistance Given x,, and thus h(x,), it is computa-
tionally infeasible to find any x> such that k{x;) = h(x2).

6. Collision resistance It is computationally infeasible to find any pairs
x1 # x2 such that h(x;) = h(x2).

£ ek 2 —

11.3 Overview of Hash Algorithms

So far we only discussed the requirements for hash functions. We now introduce
how to actually built them. There are two general types of hash functions:

1. Dedicated hash functions These are algorithms that are specifically designed to
serve as hash functions.

2. Block cipher-based hash functions It is also possible to use block ciphers such
as AES to construct hash functions.

As we saw in the previous section, hash functions can process an arbitrary-length
message and produce a fixed-length output. In practice, this is achieved by segment-
ing the input into a series of blocks of equal size. These blocks are processed se-
quentially by the hash function, which has a compression function at its heart. This
iterated design is known as Merkle-Damgdrd construction. The hash value of the
input message is then defined as the output of the last iteration of the compression
function (Fig. 11.5).

I™=aii..-I

Bixy

Fig. 11.5 Merkle-Damgird hash function construction

11.3.1 Dedicated Hash Functions: The MD4 Family

Dedicated hash functions are algorithms that have been custom designed. A large
number of such constructions have been proposed over the last two decades. In prac-
tice, by far the most popular ones have been the hash functions of what is called the
MD4 family. MD3, the SHA family and RIPEMD are all based on the principles of
MD4. MD4 is a message digest algorithm developed by Ronald Rivest. MD4 was
an innovative idea because it was especially designed to allow very efficient soft-
ware implementation. [t uses 32-bit variables, and all operations are bitwise Boolean
functions such as logical AND, OR, XOR and negation. All subsequent hash func-
tions in the MD4 family are based on the same software-friendly principles.

A strengthened version of MD4, named MDS3, was proposed by Rivest in 1991.
Both hash functions compute a 128-bit output, i.e., they possess a collision resis-
tance of about 2. MD35 became extremely widely used, e.g., in Internet security
protocols, for computing checksums of files or for storing of password hashes. There
were, however, early signs of potential weaknesses. Thus, the US NIST published a
new message digest standard, which was coined the Secure Hash Algorithm (SHA),
in 1993, This is the first member of the SHA family and is officially called SHA,
even though it is nowadays commonly referred to as SHA-0. In 1995, SHA-0 was
modified to SHA-1. The difference between the SHA-0 and SHA-1 algorithms lies
in the schedule of the compression function to improve its cryptographic security.
Both algorithms have an output length of 160 bit. In 1996, a partial attack against
MD5 by Hans Dobbertin led to more and more experts recommending SHA-1 as a
replacement for the widely used MD35. Since then, SHA-1 has gained wide adoption
in numerous products and standards.

In the absence of analytical attacks, the maximum collision resistance of SHA-
0 and SHA-1 is about 2", which is not a good fit if they are used in protocols
together with algorithms such as AES, which has a security level of 128-256 bits.
Similarly, most public-key schemes can offer higher security levels, for instance,
elliptic curves can have security levels of 128 bits if 256 bits curves are used. Thus,
in 2001 NIST introduced three more variants of SHA-1: SHA-256, SHA-384 and
SHA-512, with message digest lengths of 256, 384 and 512 bits, respectively. A
further modification, SHA-224, was introduced in 2004 in order to fit the security
level of 3DES. These four hash functions are ofien referred to as SHA-2.

In 2004, collision-finding attacks against MD5 and SHA-0 where announced by
Xiaoyun Wang. One vyear later it was claimed that the attack could be extended to
SHA-1 and it was claimed that a collision search would take 2% steps, which is
considerably less than the 2% achieved by the birthday attack. Table 11.2 gives an
overview of the main parameters of the MD4 family.

In Section 11.4 we will learn about the internal functioning of SHA-1, which is
to date—despite its potential weakness—the most widely deployed hash function.

At this point we would like to note that finding a collision does not necessarily
mean that the hash function is insecure in every situation. There are many applica-
tions for hash functions, e.g., key derivation or storage of passwords, where only

Table 11.2 The MD4 family of hash functions

Algorithm Outpit Input Mo. of Collisions
[it] [bat] rounds found
MDs 128 512 fd yes
SHA-1 160 512 B0 not yet
SHA-224|224 512 64 no
. SHA-256|256 512 64 no
SHA-Z| 6 1ia-384 384 1024 80 no
SHA-512|512 1024 B0 no

preimage and second preimage resistance are required. For such applications, MD5
is still sufficient.

11.3.2 Hash Functions from Block Ciphers

Hash functions can also be constructed using block cipher chaining techniques. As
in the case of dedicated hash functions like SHA-1, we divide the message x into
blocks x; of a fixed size. Figure 11.6 shows a construction of such a hash function:
The message chunks x; are encrypted with a block cipher ¢ of block size b. As m-bit
key input to the cipher, we use a mapping g from the previous output H;_;, which
is a b-to-m-bit mapping. In the case of b = m, which is, for instance, given if AES
with a 128-bit key is being used, the function g can be the identity mapping. After
the encryption of the message block x;, we XOR the result to the original message
block. The last output value computed is the hash of the whole message xp,x2,.. ...
ie., Hy = h(x).

TN

F il

o —

iz
H,

Fig. 11.6 The Matyas—Mever—(seas hash function construction from block ciphers

The function can be expressed as:
Hi = egu,_,)\xi) i

This construction, which is named afier its inventors, is called the Matyas—Meyer—
Oseas hash function.

There exist several other variants of block cipher based realizations of hash func-
tions. Two popular ones are shown in Figure 11.7.

Hia]

b b

o g G
: 5

b b

‘T

Hj H;

Fig. 11.7 Davies—Meyer (left) and Miyaguchi-Preneel hash function constructions from block
ciphers

The expressions for the two hash functions are:

Hi = Hi_) & ey (Hi—1) {Davies—Meyer)
H; = H;_; $.r.-EBeR.[;,5._I],{.r.-} {Miyaguchi-Preneel)

All three hash functions need to have initial values assigned to Hy. These can
be public values, e.g., the all-zero vector. All schemes have in common that the bit
size of the hash output is equal to the block width of the cipher used. In situations
where only preimage and second preimage resistance is required, block ciphers like
AES with 128-bit block width can be used, because they provide a security level of
128 bit against those attacks. For application which require collision resistance, the
128-bit length provided by most modern block ciphers is not sufficient. The birthday
attack reduces the security level to mere 64 bit, which is a computational complexity
that is within reach of PC clusters and certainly is doable for attackers with large
budgets.

One solution to this problem is to use Rijndael with a block width of 192 or
256 bit. These bit lengths provide a security level of 96 and 128 bit, respectively,
against birthday attacks, which is sufficient for most applications. We recall from
Section 4.1 that Rijndael is the cipher that became AES but allows block sizes of
128, 192 and 256 bit.

Another way of obtaining larger message digests is to use constructions which
are composed of several instances of a block cipher and which yield twice the width
of the block length b. Figure 11.8 shows such a construction for the case that a
cipher ¢ is being employed whose key length is twice the block length. This is in
particular the case for AES with a 256-bit key. The message digest output are the
2b bit (Hy ||Har). If AES is being used, this output is 2b = 256 bit long, which
provides a high level of security against collision attacks. As can be seen from the
figure, the previous output of the left cipher H;_, ; is fed back as input to both block

ciphers. The concatenation of the previous output of the right cipher, Hi_) g, with
the next message block x;, forms the key for both ciphers. For security reasons a
constant ¢ has to be XORed to the input of the right block cipher. ¢ can have any
value other than the all-zero vector. As in the other three constructions described
above, initial values have to be assigned to the first hash values (Hy . and Hy g).

Hioii Heapllx; [Y
A b 2b A B
« —-—"t_—j
1 L
e : e
ﬁ -.I i ‘.l._
[b

-“lJ. .”...

Fig. 11.8 Hirose construction for a hash function with twice the block width

We introduce here the Hirose construction for the case that the key length be
twice the block width. There are many other ciphers that satisfy this condition in
addition to AES, e.g., the block ciphers Blowfish, Mars, RC6 and Serpent. If a hash
function for resource-constrained applications is needed, the lightweight block ci-
pher PRESENT (cf. Section 3.7) allows an extremely compact hardware implemen-
tation. With a key size of 128-bit and a block size of 64 bit, the construction com-
putes a 128-bit hash output. This message digest size resists preimage and second
preimage atiacks, but offers only marginal security against birthday attacks.

11.4 The Secure Hash Algorithm SHA-1

The Secure Hash Algorithm (SHA-1) is the most widely used message digest func-
tion of the MD4 family. Even though new attacks have been proposed against the
algorithm, it is very instructive to look at its details because the stronger versions
in the SHA-2 family show a very similar internal structure. SHA-1 is based on a
Merkle-Damgdrd construction, as can be seen in Figure 11.9.

An interesting interpretation of the SHA-1 algorithm is that the compression
function works like a block cipher, where the input is the previous hash value H;_,
and the key is formed by the message block x;. As we will see below, the actual
rounds of SHA-1 are in fact quite similar to a Feistel block cipher.

SHA-1 produces a 160-hit output of a message with a maximum length of 2 bit.
Before the hash computation, the algorithm has to preprocess the message. During
the actual computation, the compression function processes the message in 512-bit

Fig. 11.9 High-level diagram of SHA-1

chunks. The compression function consists of 80 rounds which are divided into four
stages of 20 rounds each.

11.4.1 Preprocessing

Before the actual hash computation, the message x has to be padded to fit a size of
a multiple of 512 bit. For the internal processing, the padded message must then be
divided into blocks. Also, the initial value Hy 1s set to a predefined constant.

Padding Assume that we have a message x with a length of [bit. To obtain an
overall message size of a multiple of 512 bits, we append a single “1” followed
by k zero bits and the binary 64-bit representation of /. Consequently, the number
of required zeros k is given by

k=512—64—1—1
= 448 — (I + 1) mod 512

Figure 11.10 illustrates the padding of a message x.

N =512 hiis
- I bits _ k+lbits_ 64 bits
| Message fwo.o | 1|
'-____‘_'___.-"
Padding

Fig. 11.100 Padding of a message in SHA-1

Example 11.1. Given is the message “abe™ consisting of three 8-bit ASCII char-
acters with a total length of | = 24 bits:

01100001 01100010 01100011.

B b LH]

We append a “1™ followed by & = 423 zero bits, where k is determined by
k=448 —(14+1) =448 —25 =423 mod 512.

Finally, we append the 64-bit value which contains the binary representation of
the length [= 24, = 11000,. The padded message is then given by

01100001 01100010 01100011 1 00...0 00..011000.
e o) L o & L o o i o LN iy
a b c 423 zeros =24

&

Dividing the padded message Prior to applying the compression function, we
need to divide the message into 512-bit blocks x,x2,... . xy. Each 512-bit block
can be subdivided into 16 words of size of 32 bits. For instance, the ith block of
the message x is split into:

R (U Y (15)
=(x; x .x;)

where xﬁk] are words of size of 32 bits.

Initial value Hy; A 160-bit buffer is used to hold the initial hash valoe for the first
iteration. The five 32-bit words are fixed and given in hexadecimal notation as:
()
A=H;" =67452301
B= H.E” = EFCDAE89
C=H'" = 98BaDCFE
D=H" = 10325476
E=H" = capzE1F0.

11.4.2 Hash Computation

Each message block x; is processed in four stages with 20 rounds each as shown in
Figure 11.11. The algorithm uses

m a message schedule which computes a 32-bit word Wy, Wy, ..., Wog for each of the
80 rounds. The words W; are derived from the 512-bit message block as follows:

W.= J‘Jm 0= j<15
y (Wi—16BWi_ 1 4BWi_g@W_a)ae) 16<j<T9,

where Xz, indicates a circular left shift of the word X by n bit positions.

m five working registers of size of 32 bits A, B, C. D E

m ahash value H; consisting of five 32-bit words H'", H'"” H'® H® H™ In the
beginning, the hash value holds the initial value Hy, which is replaced by a new
hash value afier the processing of each single message block. The final hash value
H,, is equal to the output A(x) of SHA-1.

Hl-l
i
.:I
i
schedule
A B [N oy E
Pl]
¥ ¥
e stage 1 {20 rounds)
jl xl " H"ﬂ_l';'
A B [N n K
| 1
Wy — Wy gtage 2 {20 rownds)
R !
fi- By Wy g
A B [N m K
L
Yoo — My stage 3 (20 rounds)
- fo. Ky Wan s
Al B | o E
L I |
B W stage 4 (20 rounds)
er xq " H;u_ﬂl
a
o
addition mod 22 -
1
b BT
I_LL.
L1l
L) T
wy
'

Fig. 11.11 Eighty-round compression function of SHA-1

The four SHA-1 stages have a similar structure but use different internal func-
tions f; and constanis K, where 1 <l <L 4. Each siage is composed of 20 rounds,
where parts of the message block are processed by the function f; together with
some stage-dependent constant K;. The output after 80 rounds is added 1o the input
value H;_; modulo 2*? in word-wise fashion.

The operation within round j in stage ¢ is given by
A.B.C.D.E =(E+ f;(B.C.D) + (A)aes + Wj + K;). A, (B) &z30.C.D

and is depicted in Figure 11.12. The internal functions f; and constants K; change

L alslc|o]E]

g

NN N

e
=

| aleleclbp] e]

Fig. 11.12 Round j in stage + of SHA-1

depending on the stage according to Table 11.3, i.e., every 20 rounds a new function
and a new constant are being used. The function only uses bitwise Boolean opera-
tions, namely logical AND (A), OR (), NOT (top bar) and XOR. These operation
are applied to 32-bit variables and are very fast to implement on modern PCs.

A SHA-1 round as shown in Figure 11.12 has some resemblance to the round of
a Feistel network. Such structures are sometimes referred to as generalized Feistel
networks. Feistel networks are generally characterized by the fact the first part of
the input is copied directly to the output. The second part of the input is encrypted
using the first part, where the first part is sent through some function, e.g., the f-
function in the case of DES. In the SHA-1 round, the inputs A, B, C and D are
passed to the output with no change (A, C, D), or only minimal change (rotation of
B). However, the input word E is “encrypted” by adding values derived from the
other four input words. The message-derived value W; and the round constant play
the role of subkeys.

Table 11.3 Round functions and round consianis for the SHA rounds

Stage r [Round j| Constant K Function f
| 0...19 [K; = 5827999 N{B.C.D)=(BAC)V(BAD)
2 |20...39|K; = 6EDYEB2] fH(B.C.D)=BaCaD
3 |40...59|K3 = 8F1EBCDC|f3(B.C.D)= (BAC)V(BAD)V(CAD)
4 |60...79|K; =CR6e2ZC1DE RB.C.D)=BaCab

11.4.3 Implementation

SHA-1 was designed to be especially amenable to sofiware implementations. Each
round requires only bitwise Boolean operation with 32-bit registers. Somewhat
countering this effect is the large number of rounds. Nevertheless, optimized imple-
mentations on modern 64-bit microprocessors can achieve throughputs of 1 Gbit/sec
or beyond. These are highly optimized assembly code software and typical imple-
mentations are most likely considerably slower. Generally speaking, one drawback
of SHA-1 and other MD4 family algorithms is that they are difficult to parallelize. It
is hard to execute many of the Boolean operations that constitute a round in parallel.

With respect to hardware, SHA-1 is certainly not a truly large algorithm but there
are several factors which cause it to be larger than one might expect. Recent hard-
ware implementations on conventional FPGAs can reach a few Gbit/sec which is
not that groundbreaking compared to PC-based implementations. One reason is that
the function f; depends on the stage number 1. Another reason is the many registers
that are required to store the 512 bit intermediate resulis. Hence, block ciphers like
AES are typically smaller and fasier in hardware. Also in some applications, hash
functions built from block ciphers as described in Section 11.3.2 are sometimes
desirable for hardware implementations.

Message Authentication Codes (MACs)

A Message Authentication Code (MAC), also known as a ervptographic checksum
or a keved hash function, is widely used in practice. In terms of security function-
ality, MACs share some properties with digital signatures, since they also provide
message integrity and message authentication. However, unlike digital signatures,
MACs are symmetric-key schemes and they do not provide nonrepudiation. One
advantage of MACs is that they are much faster than digital signatures since they

are based on either block ciphers or hash functions.

12.1 Principles of Message Authentication Codes

Similar to digital signatures, MACs append an authentication tag to a message. The
crucial difference between MACs and digital signatures is that MACs use a sym-
metric key k for both generating the authentication tag and verifying it. A MAC is a
function of the symmeitric key k and the message x. We will use the notation

m = MAC(x)

for this in the following. The principle of the MAC calculation and verification is
shown in Figure 12.1.

Alice Bob
x
k
m
(£
I
k
"
verlcalion:
m=!m'

Fig. 12.1 Principle of message authentication codes (MACs)

The motivation for using MACs is typically that Alice and Bob want to be assured
that any manipulations of a message v in transit are detected. For this, Bob computes
the MAC as a function of the message and the shared secret key k. He sends both
the message and the authentication tag m to Alice. Upon receiving the message
and m, Alice verifies both. Since this is a symmetric set-up, she simply repeats the
steps that Bob conducted when sending the message: She merely recomputes the
authentication tag with the received message and the symmetric key.

The underlying assumption of this system is that the MAC computation will yield
an incorrect result if the message v was altered in transit. Hence, message integrity is
provided as a security service. Furthermore, Alice is now assured that Bob was the
originator of the message since only the two parties with the same secret key k have
the possibility to compute the MAC. If an adversary, Oscar, changes the message
during transmission, he cannot simply compute a valid MAC since he lacks the
secrel key. Any malicious or accidental (e.g., due to transmission errors) forgery of
the message will be detected by the receiver due to a failed verification of the MAC.

That means, from Alice’s perspective, Bob must have generated the MAC. In terms
of security services, message authentication is provided.

In practice, a messages x is often much larger than the corresponding MAC.
Hence, similar to hash functions, the output of a MAC computation is a fixed-length
authentication tag which is independent of the length of the input.

Together with earlier discussed characteristics of MACs, we can summarize all

their important properties:

Properties of Message Authentication Codes

1. Cryptographic checksum A MAC generates a cryptographically secure
authentication tag for a given message.

2. Symmetric MACs are based on secret symmetric keys. The signing and

verifying parties must share a secret key.

Arbitrary message size MACs accept messages of arbitrary length.

Fixed output length MACs generate fixed-size authentication tags.

. Message integrity MACs provide message integrity: Any manipulations

of a message during transit will be detected by the receiver.

6. Message authentication The receiving party is assured of the origin of
the message.

7. No nonrepudiation Since MACs are based on symmetric principles,
they do not provide nonrepudiation.

e

The last point is important to keep in mind: MACs do not provide nonrepudia-
tion. Since the two communicating parties share the same key, there is no possibility
to prove towards a neutral third party, e.g., a judge, whether a message and its MAC
originated from Alice or Bob. Thus, MACs offer no protection in scenarios where
either Alice or Bob is dishonest, like the car-buying example we described in Sec-
tion 10.1.1. A symmetric secret key is not tied to a certain person but rather to two
parties, and hence a judge cannot distinguish between Alice and Bob in case of a
dispute.

In practice, message authentication codes are constructed in essentially two dif-
ferent ways from block ciphers or from hash functions. In the subsequent sections
of this chapter we will introduce both options for realizing MACs.

12.2 MACSs from Hash Functions: HMAC

An option for realizing MACs is to use cryptographic hash functions such as SHA-
1 as a building block. One possible construction, named HMAC, has become very
popular in practice over the last decade. For instance, it is used in both the Transport
Layer Security (TLS) protocol (indicated by the little lock symbol in your Web
browser) as well as in the [Psec protocol suite. One reason for the widespread use of

the HMAC construction is that it can be proven to be secure if certain assumptions
are made.
The basic idea behind all hash-based message authentication codes is that the key
15 hashed together with the message. Two obvious constructions are possible. The
first one:
m = MACy(x) = h(k||x)

is called secret prefix MAC, and the second one:
m = MAC;(x) = h(x||k)

is known as secret suffix MAC. The symbol “||" denotes concatenation. Intuitively,
due to the one-wayness and the good “scrambling properties™ of modern hash func-
tions, both approaches should result in strong cryptographic checksums. However,
as is often the case in cryptography, assessing the security of a scheme can be trickier
than it seems at first glance. We now demonstrate weaknesses in both constructions.

Attacks Against Secret Prefix MACs

We consider MACs realized as m = h(k||x). For the attack we assume that the
cryptographic checksum m is computed using a hash construction as shown in Fig-
ure 11.5. This iterated approach is used in the majority of today’s hash functions.
The message x that Bob wants to sign is a sequence of blocks x = (x),x2.....x,).
where the block length matches the input width of the hash function. Bob computes
an authentication tag as:

m=MACg(x) = h{k||x;.x2.....x4)

The problem is that the MAC for the message x = (x),x2,.... X5, X541), Where x,4)
15 an arbitrary additional block, can be constructed from m without knowing the
secret key. The attack is shown in the protocol below.

Attack Against Secret Prefix MACs

Alice ()scar Boh

x=(xp,--., Xa)
m = hik]|xy.....x)

[xm]

§ intercept
X3 =
(1. 5 Xn:Xn+1)
g = hl{m"x,,.,_L}
(x5-mg)
m" =
hik]|x,-- ., Xn, Xn+1)
SINCE /" = Mg
= valid signature!
Note that Alice will accept the message (xy,...,X5,X541) as valid, even though
Bob only authenticated (xy.....x,). The last block x,.) could, for instance, be an

appendix to an electronic contract, a situation that could have serious consequences.

The attack is possible since the MAC of the additional message block only needs
the previous hash output, which is equal to Bob’s m, and x,4) as input but not the
key k.

Attacks Against Secret Suffix MACs

After studying the attack above, it seems to be safe to use the other basic con-
struction method, namely m = h(x||k). However, a different weakness occurs here.
Assume Oscar is capable of constructing a collision in the hash function, i.e., he can
find x and xp such that:

hix) = h(xp).

The two messages x and xp can be, for instance, two versions of a contract which
are different in some crucial aspect, e.g., the agreed upon payment. If Bob signs x
with a message authentication code

m = h(x||k)
m is also a valid checksum for xa. 1.2.,
m = h(x|[k) = h(xo|[k)

The reason for this is again given by the iterative nature of the MAC computation.
Whether this attack presents Oscar with an advantage depends on the parameters
used in the construction. As a practical example, let’s consider a secret suffix MAC
which uses SHA-1 as hash function, which has an output length of 160 bits, and
a 128-bit key. One would expect that this hash offers a security level of 128 bits,

i.e., an attacker cannot do better than brute-forcing the entire key space to forge a
message. However, if an attacker exploits the birthday paradox (cf. Section 11.2.3),
he can forge a signature with about +/2190 = 2% computations. There are indications
that SHA-1 collisions can be constructed with even fewer steps, so that an actual
attack might be even easier. In summary, we conclude that the secret suffix method
also does not provide the security one would like to have from a MAC construction.

HMAC

A hash-based message authentication code which does not show the security weak-
ness described above is the HMAC construction proposed by Mihir Bellare, Ran
Canetti and Hugo Krawczyk in 1996. The scheme consists of an inner and outer
hash and is visualized in Figure 12.2.

K ipad

o

s [w] - [
T

Y

npjad N\ b f—

[[k
P

kq—

Fig. 12.2 HMAC construction

The MAC computation starts with expanding the symmetric key k with zeros on
the left such that the result k™ is b bits in length, where b is the input block width of
the hash function. The expanded key is XORed with the inner pad. which consists
of the repetition of the bit pattern:

ipad = 00110110,00110110,....00110110

so that a length of b bit is achieved. The output of the XOR forms the first input
block to the hash function. The subsequent input blocks are the message blocks
(xX1.%2, .., %)

The second, outer hash is computed with the padded key together with the output
of the first hash. Here, the key is again expanded with zeros and then XORed with
the outer pad:

opad = 0101 1100,0101 1100, ...,0101 1100.

The result of the XOR operation forms the first input block for the outer hash. The
other input is the output of the inner hash. Afier the outer hash has been computed,
its output is the message authentication code of x. The HMAC construction can be
expressed as:

HMAC(x) = h [(k™ & opad)| |k [(kT & ipad)||«]] .

The hash output length [is in practice longer than the width b of an input block.
For instance, SHA-1 has an [= 160 bit output but accepts b = 512 bit inputs. It
does not pose a problem that the inner hash function output does not match the
input size of outer hash because hash functions have preprocessing steps to maich
the input string to the block width. As an example, Section 11.4.1 described the
preprocessing for SHA-1.

In terms of computational efficiency, it should be noted that the message x, which
can be very long, is only hashed once in the inner hash function. The outer hash
consisis of merely two blocks, namely the padded key and the inner hash output.
Thus, the computational overhead introduced through the HMAC construction is
very low.

In addition to its computational efficiency, a major advantage of the HMAC con-
struction is that there exists a proof of security. As for all schemes which are prov-
able secure, HMAC is not secure per se, but its security is related to the security of
some other building block. In the case of the HMAC construction it can be shown
that if an attacker, Oscar, can break the HMAC, he can also break the hash function
used in the scheme. Breaking HMAC means that even though Oscar does not know
the key. he can construct valid anthentication tags for messages. Breaking the hash
function means that he can either find collisions or that he can compute a hash func-
tion output even though he does not know the initial value IV {which was the value
Hjy in the case of SHA-1).

12.3 MACs from Block Ciphers: CBC-MAC

In the preceding section we saw that hash functions can be used to realize MACs.
An alternative method is to construct MACs from block ciphers. The most popular

approach in practice is to use a block cipher such as AES in cipher block chaining
(CBC) mode, as discussed in Section 5.1.2.

Figure 12.3 depicts the complete setting for the application of a MAC on basis
of a block cipher in CBC mode. The left side shows the sender, the right side the

receiver. This scheme is also referred to as CRC-MAC.

H fm, ..y)) . "= el
e = MAC) | vefian

Fig. 12.3 MAC built from a block cipher in CBC mode

MAC Generation

For the generation of a MAC, we have to divide the message x into blocks xj,i =
1,...,n. With the secret key k and an initial value IV, we can compute the first itera-
tion of the MAC algorithm as

i =elualVv),

where the IV can be a public but random value. For subsequent message blocks we
use the XOR of the block x; and the previous output y;_; as input to the encryption
algorithm:

vi = exlxi B yviz1).
Finally, the MAC of the message x = x1.x2x3...%, is the output v, of the last round:
m = MAC,(x) = v,

In contrast to CBC encryption, the values y;,v2,¥3,...,Vp—1 are not transmitted.
They are merely internal values which are used for computing the final MAC value
"= V.

MAC Verification

As with every MAC, verification involves simply repeating the operation that were
used for the MAC generation. For the actual verification decision we have o com-

pare the computed MAC m' with the received MAC value m. In case m' = m, the
message is verified as correct. In case m' # m, the message and/or the MAC value
m have been altered during transmission. We note that the MAC verification is dif-
ferent from CBC decryption, which actually reverses the encryption operation.

The output length of the MAC is determined by the block size of the cipher used.
Historically, DES was widely used, e.g.. for banking applications. More recently,
AES is often used; it yields a MAC of length 128 bit.

