Optimization problems

@ General continuous optimization problem:
min f(x) subjectto g(x)=0 and h(x) <0

where f: R" —= R, ¢g:R*"—R™, h:R"'— RP
@ Linear programming: f, g, and h are all linear

@ Nonlinear programming: at least one of f, g, and h is
honlinear



Examples

@ Minimize weight of structure subject to constraint on its
strength, or maximize its strength subject to constraint on
its weight

@ Minimize cost of diet subject to nutritional constraints

@ Minimize surface area of cylinder subject to constraint on
Its volume:

min f(aq,x9) = 27w (11 + 29)
Iry,ra

subjectto  g(x1.20) = matae —V =0

where x1 and x» are radius and height of cylinder, and V' is
required volume



Global vs. local optimization

@ x* € Sis global minimum if f(x*) < f(x) forallx € S

@ x* € Sis local minimum if f(x*) < f(x) for all feasible = in
some neighborhood of x*

I

local minimum

1

global minimum



Global optimization

e Finding, or even verifying, global minimum is difficult, in
general

e Most optimization methods are designed to find local
minimum, which may or may not be global minimum

e If global minimum is desired, one can try several widely
separated starting points and see if all produce same
result

e For some problems, such as linear programming, global
optimization is more tractable



Existence of Minimum

@ If f is continuous on closed and bounded set S C R™, then

f has global minimum on S

@ If S'is not closed or is unbounded, then f may have no
local or global minimum on S

@ Continuous function f on unbounded set S C R" is
coercive |f
lim f(x)=+oc

Jael|—oc

l.e., f(ax) must be large whenever ||x|| is large

@ If f is coercive on closed, unbounded set 5 C R", then f

has global minimum on S




First-order optimality condition

@ For function of one variable, one can find extremum by
differentiating function and setting derivative to zero

@ Generalization to function of n variables is to find critical
point, i.e., solution of nonlinear system

Vix)=0

where V f(ax) is gradient vector of f, whose ith component
Is O f(x)/0x;

@ For continuously differentiable f: S C R™ — R, any interior
point «* of S at which f has local minimum must be critical
point of f

@ But not all critical points are minima: they can also be
maxima or saddle points



Second-order optimality
condition

@ For twice continuously differentiable f: S CR" — R, we
can distinguish among critical points by considering
Hessian matrix H ¢(x) defined by

0% f ()

i@k = 5o,

which is symmetric

@ At critical point =*, if H¢(x") is
e positive definite, then x* is minimum of f
e negative definite, then =* is maximum of f
e indefinite, then x* is saddle point of f
e singular, then various pathological situations are possible



Constrained optimality

@ If problem is constrained, only feasible directions are
relevant

@ For equality-constrained problem
min f(x) subjectto g(x)=0

where f: R" — Rand g: R" — R™, with m < n, hecessary
condition for feasible point =* to be solution is that negative
gradient of f lie in space spanned by constraint normals,

~Vf(x*) = IT (@)

where J, is Jacobian matrix of g, and A is vector of
Lagrange multipliers

@ This condition says we cannot reduce objective function
without violating constraints



Constrained optimality

@ Lagrangian function £: R"*™ — R, is defined by
Lz ) = f(z)+ A g(x)

@ Its gradient is given by

V() = [‘v_—f (x) +J (m]
glx)
@ Its Hessian is given by
e .| Bz, A) Jg{.,[‘}
Hp(x . A) = [ 7 () 5

where
B(xz,\) = Hp(z) + > \Hy, ()




Constrained optimality

@ Together, necessary condition and feasibility imply critical
point of Lagrangian function,

Vi(x)+ JT(z)A

g

g(x) =0

VL(x, ) =

@ Hessian of Lagrangian is symmetric, but not positive
definite, so critical point of £ is saddle point rather than
minimum or maximum

@ Critical point (x*, A*) of £ 1s constrained minimum of f if
B(x*, \*) Is positive definite on null space of J,(x*)

@ If columns of Z form basis for null space, then test
projected Hessian ZT B Z for positive definiteness



Constrained optimality

e If inequalities are present, then KKT optimality conditions
also require nonnegativity of Lagrange multipliers
corresponding to inequalities, and complementarity
condition



Unimodality

@ For minimizing function of one variable, we need “bracket”
for solution analogous to sigh change for nonlinear
equation

@ Real-valued function f is unimodal on interval [a, b] if there
IS unique =* € [a, b] such that f(x*) is minimum of f on
la, b], and f is strictly decreasing for = < x*, strictly
Increasing for o* < a

@ Unimodality enables discarding portions of interval based
on sample function values, analogous to interval bisection



Golden section search

@ Suppose f is unimodal on [a, b], and let 2y and x5 be two
points within [a, b], with =1 < w9

@ Evaluating and comparing f(x1) and f(x5), we can discard
either (a9, b] or |a, x1), with minimum known to lie in
remaining subinterval

@ To repeat process, we need compute only one new
function evaluation

@ To reduce length of interval by fixed fraction at each
Iteration, each new pair of points must have same
relationship with respect to new interval that previous pair
had with respect to previous interval



Golden section search

@ To accomplish this, we choose relative positions of two
points as 7 and 1 — 7, where 72 =1-17, S0
r=(V6—-1)/2~0618and 1 — 7 ~ 0.382

@ Whichever subinterval is retained, its length will be 7
relative to previous interval, and interior point retained will
be at position either 7 or 1 — 7 relative to new interval

@ To continue iteration, we need to compute only one new
function value, at complementary point

@ This choice of sample points is called golden section
search

@ Golden section search is safe but convergence rate is only
linear, with constant C' = 0.618



Golden section search

T=(vb6-1)/2
r1=a+ (1 —7)(b—a); fi = f(z1)
g =a+T7(b—a); fo = f(xs)
while ((b—a) > tol) do

if (f1 > f2) then
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end



0.5 — x exp(—x?)

f(z)

Use golden section search to minimize

Example
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Example (cont.)

€X'o

fo

(.764
(.472
().764
().652
().584
().652
(.695
(.679
(.695
(.705

0.071

1.236
0.764
(.944
(.764
().652
(.695
0.721
0.695
0.705
0.711

0.232
0.074
0.113
0.074
0.074
0.071
0.071
0.071
0.071
0.071



Newton’s method

@ Another local quadratic approximation is truncated Taylor

series
f”('-f:) h__?

fle+h)= f(x)+ f(x)h +

@ By differentiation, minimum of this quadratic function of & is
givenby h = —f'(x)/ f"(x)
@ Suggests iteration scheme
1 = o — f(xx) /£ (k)
which is Newton's method for solving nonlinear equation

') =0

Newton’s method for finding minimum normally has quadratic
convergence rate, but must be started close enough to solution
to converge



Example

@ Use Newton’s method to minimize f(x) = 0.5 — xexp(—a?)
@ First and second derivatives of f are given by
f(z) = (2;1-2 —1) (_‘r}:[)[j—:i!rgj
and
f'(x) = 2x(3 — 2:!‘2] (*.}:]J(—:I‘E]
@ Newton iteration for zero of f’ is given by
Thtl = T} — (2:3.‘% —1)/(22p(3 — E;ri]}
@ Using starting guess xy = 1, we obtain
. flag)
1.000  0.132
0.500  0.111

0.700  0.071
0.707  0.071




Safeguarded methods

@ As with nonlinear equations in one dimension,
slow-but-sure and fast-but-risky optimization methods can
be combined to provide both safety and efficiency

@ Most library routines for one-dimensional optimization are
based on this hybrid approach

@ Popular combination is golden section search and
successive parabolic interpolation, for which no derivatives
are required



Multidimensional optimization.
Direct search methods

@ Direct search methods for multidimensional optimization
make no use of function values other than comparing them

@ For minimizing function f of n variables, Nelder-Mead
method begins with n 4 1 starting points, forming simplex
in R"

@ Then move to new point along straight line from current
point having highest function value through centroid of
other points

@ New point replaces worst point, and process is repeated

@ Direct search methods are useful for nonsmooth functions
or for small n, but expensive for larger n



Steepest descent method

@ Let f: IR" — R be real-valued function of n real variables

@ At any point = where gradient vector is nonzero, negative
gradient, —V f(x), points downhill toward lower values of f

@ Infact, —V f(x) is locally direction of steepest descent: f
decreases more rapidly along direction of negative
gradient than along any other

@ Steepest descent method: starting from initial guess x,
successive approximate solutions given by

Tipt1 = T — oV f(k)

where «y, is line search parameter that determines how far
to go in given direction



Steepest descent method

@ Given descent direction, such as negative gradient,
determining appropriate value for o, at each iteration is
one-dimensional minimization problem

min f(xy — oV f(ak))

ey
that can be solved by methods already discussed

@ Steepest descent method is very reliable: it can always
make progress provided gradient is honzero

@ But method is myopic in its view of function’s behavior, and
resulting iterates can zigzag back and forth, making very
slow progress toward solution

@ In general, convergence rate of steepest descent is only
linear, with constant factor that can be arbitrarily close to 1



Example

@ Use steepest descent method to minimize

f(x) = 0.527 + 2.523

|

@ Performing line search along negative gradient direction,

@ Gradientis given by V f(x) = [ml ]

hiro

[t

|

-

@ Taking o = [ ],we have V f(xzo) = [

o

min f(xg — oV f(xo))

X[
exact minimum along line is given by ag = 1/3, so next
3.333]

approximation is @y = [_“ 667



Example (cont.)

T}, f(xp) V f(xg)
5.000 1.000 | 15.000 | 5.000 5.000
3.333 —0.667 6.667 | 3.333 —3.333
2.222 0.444 2.963 | 2.222 2.222
L4581 —0.296 1.317 | 1.4581 —1.481
0.988 0.195 0.585 | 0.988 ().988
0.658 —0.132 0.260 | 0.658 —0.658
0.439 0.085 0.116 | 0.439 0.439
0.293 —0.059 0.051 | 0.293 —0.293
0.195 (0.039 0.023 | 0.195 (0.195
0.130 —0.026 0.010 | 0.130 —-0.130




Newton’s method

@ Broader view can be obtained by local quadratic
approximation, which is equivalent to Newton’'s method

@ In multidimensional optimization, we seek zero of gradient,
so Newton iteration has form

Tpi1 = Tf — H;l(m;ﬂ)Vf(m;c)

where H(x) Is Hessian matrix of second partial
derivatives of f,

" f(x)

Hr@)ki = 57 o,




Newton’s method

@ Do not explicitly invert Hessian matrix, but instead solve
linear system

Hy(xy)sp = —Vf(zg)
for Newton step s;., then take as next iterate
Tk+1 = Tk + Sk

@ Convergence rate of Newton’'s method for minimization is
normally quadratic

@ As usual, Newton’s method is unreliable unless started
close enough to solution to converge



Example

@ Use Newton’s method to minimize

f(*r] = (].5.‘1‘2 1 2.5.‘1‘2
1 2

@ Gradient and Hessian are given by

9

@ Linear system for Newton step is [1 [5] 80 [_“‘1 . SO

=

@ Taking xp = H , we have V f(xg) = [

[y |

|

[y |

0 3

— )

=

5) —5 0 L .
0=, . which is exact solution

for this problem, as expected for quadratic function

;Elz;tfﬂ—I—SD:[



Newton’s method

@ In principle, line search parameter is unnecessary with
Newton's method, since quadratic model determines
length, as well as direction, of step to next approximate

solution

@ When started far from solution, however, it may still be
advisable to perform line search along direction of Newton
step s;, to make method more robust (damped Newton)

@ Once iterates are near solution, then o, = 1 should suffice
for subsequent iterations



Newton’s method

@ If objective function f has continuous second partial
derivatives, then Hessian matrix H; is symmetric, and
near minimum it is positive definite

@ Thus, linear system for step to next iterate can be solved in
only about half of work required for LU factorization

@ Far from minimum, H¢(x;) may not be positive definite, so
Newton step s, may not be descent direction for function,
l.e., we may not have

Vflxp) s, <0

@ In this case, alternative descent direction can be
computed, such as negative gradient or direction of
negative curvature, and then perform line search



Quasi-Newton methods

@ Newton’s method costs @ (n?) arithmetic and O(n?) scalar
function evaluations per iteration for dense problem

@ Many variants of Newton’s method improve reliability and
reduce overhead

@ Quasi-Newion methods have form
— 1l
Tpy1 = xp — apB TV f(ayg)

where «y, Is line search parameter and B;. Is approximation
to Hessian matrix

@ Many quasi-Newton methods are more robust than
Newton’'s method, are superlinearly convergent, and have
lower overhead per iteration, which often more than offsets
their slower convergence rate



Conjugate gradient method

@ Another method that does not require explicit second
derivatives, and does not even store approximation to
Hessian matrix, is conjugate gradient (CG) method

@ CG generates sequence of conjugate search directions,
implicitly accumulating information about Hessian matrix

@ For quadratic objective function, CG is theoretically exact
after at most n iterations, where n is dimension of problem

@ CG is effective for general unconstrained minimization as
well



Inequality-constrained
optimization

@ Methods just outlined for equality constraints can be

extended to handle inequality constraints by using active
set strategy

@ Inequality constraints are provisionally divided into those
that are satisfied already (and can therefore be temporarily
disregarded) and those that are violated (and are therefore
temporarily treated as equality constraints)

@ This division of constraints is revised as iterations proceed
until eventually correct constraints are identified that are
binding at solution



Penalty methods

@ Merit function can also be used to convert

equality-constrained problem into sequence of
unconstrained problems

@ If.r Is solution to

min ¢,(x) = f(x) + 1 pglx) g(x)

a

then under appropriate conditions

*

lim 2" ==«
p—r:‘:ﬂ:} "D

This enables use of unconstrained optimization methods, but problem
becomes ill-conditioned for large p, so we solve sequence of problems with
gradually increasing values of , with minimum for each problem used as
starting point for next problem



