
Text: 

1. Recurrences 

When an algorithm contains a recursive call to itself, its running time can often be 

described by a recurrence. A recurrence is an equation or inequality that describes a 

function in terms of its value on smaller inputs.  

Consider the following recursive function: 

void disp (int n)                
{          
 if(n>0)    ----------------------------> 1 
 { 
  printf(“%d”, n);   ----------------------------> 1 
  disp(n-1);   ----------------------------> T(n-1)  
 } 
} 

Here, the running time complexity T(n) can be described in two parts.  

i) T(n) = 1 when n=0, i.e. the if condition would be executed once and the 

function would end. 

ii) T(n) = T(n-1) + 1, this is the recursive call to the function itself and is 

dependent on the running time of the sub or recursive call T(n-1). The 

constant 1 is added because of the printf() statement, which would be 

executed once in each call. 

𝑇(𝑛) = {
1 − − − − − − − −𝑛 = 0

𝑇(𝑛 − 1) + 1 − − −  𝑛 > 0
 

Similarly, the worst-case running time T (n) of the merge sort algorithm could be 

described by the recurrence 

𝑇(𝑛) = {
𝜃(1) − − − − − − − 𝑛 = 1

2𝑇(𝑛/2) + 𝜃(1) − −𝑛 > 1
 

whose solution was claimed to be T(n) = (n log n). 

There four basic methods for solving recurrences that is, for obtaining asymptotic 

bounds on the solution. In the substitution method, we guess a bound and then use 

mathematical induction to prove our guess correct. The iteration method converts the 

recurrence into a summation and then relies on techniques for bounding summations 

to solve the recurrence. The iteration tree method solves the recurrence graphically 

using the tree structure. The master method provides bounds for recurrences of the 

form 

T ( n ) = aT ( n - b ) + ( n ) 

T ( n ) = aT ( n / b ) + ( n ), 



where a >1, b > 1, and ( n ) is a given function; it requires memorization of three 

cases, but once you do that, determining asymptotic bounds for many simple 

recurrences is easy. 

1.1. Substitution Method 

A lot of things in this method reduce to induction. In the substitution method for 

solving recurrences we 

 Guess the form of the solution. 

 Use mathematical induction to find the constants and show that the solution 

works. 

Let us see some examples to see how this method works  

Example 

Let us consider the following recurrence:  

𝑇(𝑛) = {
1 − − − − − − − 𝑛 = 1

2𝑇(𝑛/2) + 𝑛 − −𝑛 > 1
 

We guess that the solution is T(n) = O(n log n).  

So we must prove that T(n) ≤ c n log n for some constant c. (We will get to n0 later, but 

for now let’s try to prove the statement for all n ≥ 1) 

As our inductive hypothesis, we assume T(n) ≤ c n log n for all positive numbers less 

than n.  

Therefore, T(n/2) ≤ c n/2 log(n/2)), and 

T(n) ≤  2(c n/2  log(n/2)) + n 

≤  c n log(n/2) + n 

=  c n log n – cn log 2 + n 

=  c n log n − cn + n 

≤  c n log n (for c ≥ 1) 

 

Now we need to show the base case.  

This is tricky, because if T(n) ≤ c n log n, then T(1) ≤ 0, which is not a thing.  

So we revise our induction so that we only prove the statement for n ≥ 2, and the base 

cases of the induction proof (which is not the same as the base case of the 

recurrence!) are n = 2 and n = 3. (We are allowed to do this because asymptotic 

notation only requires us to prove our statement for n ≥ n0, and we can set n0 = 2.) We 

choose n = 2 and n = 3 for our base cases because when we expand the recurrence 

formula, we will always go through either n = 2 or n = 3 before we hit the case where 

n = 1.  



So proving the inductive step as above, plus proving the bound works for n = 2 and n 

= 3, suffices for our proof that the bound works for all n > 1. Plugging the numbers into 

the recurrence formula, we get  

T(2) = 2T(1) + 2 = 4 and  

T(3) = 2T(1) + 3 = 5.  

So now we just need to choose a c that satisfies those constraints on T(2) and T(3). 

We can choose c = 2, because 4 ≤ 2 · 2log2 and 5 ≤ 2 · 3log3. 

Therefore, we have shown that T(n) ≤ 2n log n for all n ≥ 2, so T(n) = O(n log n). 

Warning: Using the substitution method, it is easy to prove a weaker bound than the 

one you’re supposed to prove. For instance, if the runtime is O(n), you might still be 

able to substitute c.n 2 into the recurrence and prove that the bound is O(n 2 ). Which 

is technically true, but don’t let it mislead you into thinking it’s the best bound on the 

runtime. People often get burned by this on exams! 

Consider the following recurrence relation, which shows up fairly frequently for some 
types of algorithms:  

𝑇(𝑛) = {
1 − − − − − − − −𝑛 = 1

2𝑇(𝑛 − 1) + 𝐶1 − −𝑛 > 1
 

we can guess that this will be O(2n).  

To use the substitution method to prove this bound, we now need to guess a closed-
form upper bound based on this asymptotic bound. We will guess an upper bound of 
k2n − b, where b is some constant.  

We include the b in anticipation of having to deal with the constant C1 that appears in 
the recurrence relation, and because it does no harm. In the process of proving this 
bound by induction, we will generate a set of constraints on k and b, and if b turns out 
to be unnecessary, we will be able to set it to whatever we want at the end.  

Our property, then, is T(n) ≤ k2n − b, for some two constants k and b. Note that this 
property logically implies that T(n) is O(2n), which can be verified with reference to the 
definition of O.  

Base case: n = 1. T(1) = 1 ≤ k21 − b = 2k − b. This is true as long as k ≥ (b + 1)/2.  

Inductive case: We assume our property is true for n − 1. We now want to show that 

it is true for n.  

T(n) = 2T(n−1) + C1  

  ≤ 2(k2n − 1 − b) + C1      (by IH)  

  = k2n − 2b + C1  



  ≤ k2n − b  

This is true as long as b ≥ C1.  

So we end up with two constraints that need to be satisfied for this proof to work, and 
we can satisfy them simply by letting b = C1 and k = (b + 1)/2, which is always possible, 
as the definition of O allows us to choose any constant. Therefore, we have proved 
that our property is true, and so T(n) is O(2n).  


