
Text: 

1. Growth of Functions 

If we have two algorithms which perform the same task on n inputs, and the first has 

a computing time which is O(n) and the second O(n2), which is superior? It is easy to 

see that for sufficiently large values of n, the time for the second algorithm will be larger 

than the time for the first. For example, if the actual computing times for these 

algorithms are 2n and n2 respectively, then algorithm one is faster (i.e. has a smaller 

value) than algorithm two for all n > 2. On the other hand, if the actual computing times 

are 104 n and n2 then algorithm two is faster for all n < 104. For n > 104 algorithm one 

is faster.  

So, we cannot decide which of the two algorithms is better unless we know something 

about the constants associated with the orders of magnitude. If the constants are 

comparable then the lower order algorithm is better than the higher order algorithm. 

But this is not the whole story. The point at which one algorithm requires fewer 

operations than another also depends upon the low order terms. In practice these 

terms and their coefficients depend on many factors, such as the language and the 

machine one is using. Alas, it is far more difficult to derive the entire formula for the 

computing time than the leading term. Thus for a priori analysis, we content ourselves 

with determining the order of magnitude, and the establishment of its constant will be 

postponed until after the program has been written and executed. We will not usually 

derive any terms other than the order of magnitude, unless those terms significantly 

influence the comparison of two algorithms.  

As an example of the usefulness of improving an algorithm by an order of magnitude, 

suppose we have two algorithms for solving the same task which require n2 and n log 

n operations on n inputs. For n = 1024 they require 1,048,576 versus 10,240 

operations. If it takes one microsecond to perform each operation, then algorithm one 

requires about 1.05 seconds while algorithm two requires .01 seconds on the same 

input. If we double n to 2048, then the operation counts become 4,194,304 versus 

22,528 or roughly 4.2 seconds versus .02 seconds. When the n is doubled an O(n2) 

algorithm takes four times as long to complete while an O(n log n) algorithm takes only 

a little more than twice as long to complete. Since an n of several thousand is not 

especially large, we see how important an order of magnitude improvement such as 

this can be. 

The most common computing times for algorithms we will see here are 

O(1) < O(log n) < O(n) < O(n log n) < O(n2) < O(n3) < O(2n) 

O(1) means that the number of executions of basic operations is fixed and hence the 

total time is bounded by a constant. The first six orders of magnitude have an important 

property in common, they are bounded by a polynomial. O(n), O(n2), and O(n3) are 



themselves polynomials referred to by their degrees: linear, quadratic, and cubic. 

However, there is no integer m such that nm bounds 2n, or 

2n ≠ O(nm) for any integer m. The order of this formula is O(2n ) 

An algorithm whose computing time is bounded below by Ω(2n )is said to require 

exponential time. As n gets large, there becomes a tremendous difference between 

exponential and polynomial time algorithms. If one finds an algorithm which reduces 

the time to solve a problem from exponential to polynomial, that is a great 

accomplishment.  

Figure 6.1 and Table 6.1 show how the computing times for six of the typical functions 

grow with a constant equal to one. Notice how the times O(n) and O(n log n) grow 

much more slowly than the others. For large data sets, algorithms with a complexity 

greater than O(n log n) are often impractical. An algorithm which is exponential will be 

practical only for very small values of n and even if we decrease the leading constant, 

say by a factor of 2 or 3, we will not improve the amount of data we can handle by very 

much.  

 

 

 

 

 

Figure 6.1 Rate of growth of common computing time functions 



log n N n log n n2 n3 2n 

0 1 0 1 1 2 

1 2 2 4 8 4 

2 4 8 16 64 16 

3 8 24 64 512 256 

4 16 64 256 4096 65536 

5 32 160 1024 32768 4294967296 

Table 6.1 Values for computing functions 

 

1.1. Comparison of Functions: 

Often times, the running time complexities of different algorithms are presented in the 

form of functions T(n). In order to know which algorithm is better and to make a 

quantitative judgement, we have to compare functions (T(n)). For simpler functions, 

we can make the comparisons based on heuristics, however, we must know the 

technical way to do the same. The following two methods are usually used to compare 

functions: 

i. Substituting “n” 

ii. Using Logarithm 

Let us see some examples to understand the working of these methods  

 

Example 6.1:    

 f(n) = n2 & g(n) = n3 

(i) Substituting values of n, we get   

N f(n) = 

n2 

g(n) = 

n3 

2 4 8 

3 9 27 

4 16 64 

⸫, f(n) < g(n) 

 

(ii) Applying log to both functions 

 f(n) = log n2 = 2 log n 

 g(n) = log n3 = 3 log n 

Since, 2log n < 3 log n  

=> f(n) < g(n)  



 

Example 6.2: 

f(n) = n2 log n  &  g(n) = n (log n)10 

 Applying log to both functions 

 f(n) = log (n2 log n)   = log n2 + log log n = 2 log n + log log n 

 g(n) = log (n (log n)10) = log n + log (log n)10 = log n + 10 log log n 

since, 2log n > log n   (log log n is very small term) 

=> f(n) > g(n)  

 

Example 6.3:     

f(n) = 3 n √n &  g(n) = 2 √n log n 

 g(n) = 2log 𝑛
√𝑛

 = (n√n) log 2 = n√n  (a log b = b log a) 

 Here,  3 n √n > n√n (value wise) 

But, f(n) = g(n)   (asymptotically order is same because we didn’t 

apply log) 

 

Example 6.4:   

f(n) = 2n & g(n) = 22n 

 Applying log to both functions 

 f(n)= log 2n = n log 2 = n 

 g(n)= log 22n = 2n log 2 = 2n 

since, n < 2 n  

f(n) < g(n)   

(after taking log, we cannot say that they are asymptotically equal, even if they are 

of same order) 

 

  

 


