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Introduction

Graph theory may be said to have its begin-
ning in 1736 when EULER considered the (gen-
eral case of the) Königsberg bridge problem:
Does there exist a walk crossing each of the
seven bridges of Königsberg exactly once? (So-
lutio Problematis ad geometriam situs perti-
nentis, Commentarii Academiae Scientiarum Impe-
rialis Petropolitanae 8 (1736), pp. 128-140.)

It took 200 years before the first book on graph theory was written. This was “The-
orie der endlichen und unendlichen Graphen” ( Teubner, Leipzig, 1936) by KÖNIG in
1936. Since then graph theory has developed into an extensive and popular branch of
mathematics, which has been applied to many problems in mathematics, computer
science, and other scientific and not-so-scientific areas. For the history of early graph
theory, see

N.L. BIGGS, R.J. LLOYD AND R.J. WILSON, “Graph Theory 1736 – 1936”, Clarendon
Press, 1986.

There are no standard notations for graph theoretical objects. This is natural, be-
cause the names one uses for the objects reflect the applications. Thus, for instance, if
we consider a communications network (say, for email) as a graph, then the comput-
ers taking part in this network, are called nodes rather than vertices or points. On the
other hand, other names are used for molecular structures in chemistry, flow charts
in programming, human relations in social sciences, and so on.

These lectures study finite graphs and majority of the topics is included in

J.A. BONDY, U.S.R. MURTY, “Graph Theory with Applications”, Macmillan, 1978.

R. DIESTEL, “Graph Theory”, Springer-Verlag, 1997.

F. HARARY, “Graph Theory”, Addison-Wesley, 1969.

D.B. WEST, “Introduction to Graph Theory”, Prentice Hall, 1996.

R.J. WILSON, “Introduction to Graph Theory”, Longman, (3rd ed.) 1985.

In these lectures we study combinatorial aspects of graphs. For more algebraic topics
and methods, see

N. BIGGS, “Algebraic Graph Theory”, Cambridge University Press, (2nd ed.) 1993.

C. GODSIL, G.F. ROYLE, “Algebraic Graph Theory”, Springer, 2001.
and for computational aspects, see

S. EVEN, “Graph Algorithms”, Computer Science Press, 1979.
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In these lecture notes we mention several open problems that have gained respect
among the researchers. Indeed, graph theory has the advantage that it contains easily
formulated open problems that can be stated early in the theory. Finding a solution
to any one of these problems is another matter.

Sections with a star (∗) in their heading are optional.

Notations and notions

• For a finite set X, |X| denotes its size (cardinality, the number of its elements).
• Let

[1, n] = {1, 2, . . . , n},

and in general,
[i, n] = {i, i + 1, . . . , n}

for integers i ≤ n.
• For a real number x, the floor and the ceiling of x are the integers

⌊x⌋ = max{k ∈ Z | k ≤ x} and ⌈x⌉ = min{k ∈ Z | x ≤ k}.

• A family {X1, X2, . . . , Xk} of subsets Xi ⊆ X of a set X is a partition of X, if

X =
⋃

i∈[1,k]

Xi and Xi ∩ Xj = ∅ for all different i and j .

• For two sets X and Y,

X ×Y = {(x, y) | x ∈ X, y ∈ Y}

is their Cartesian product, and

X△Y = (X \ Y) ∪ (Y \ X)

is their symmetric difference. Here X \ Y = {x | x ∈ X, x /∈ Y}.
• Two integers n, k ∈ N (often n = |X| and k = |Y| for sets X and Y) have the same
parity, if both are even, or both are odd, that is, if n ≡ k (mod 2). Otherwise, they
have opposite parity.

Graph theory has abundant examples of NP-complete problems. Intuitively, a
problem is in P 1 if there is an efficient (practical) algorithm to find a solution to it. On
the other hand, a problem is in NP 2, if it is first efficient to guess a solution and then
efficient to check that this solution is correct. It is conjectured (and not known) that
P 6= NP. This is one of the great problems in modern mathematics and theoretical
computer science. If the guessing in NP-problems can be replaced by an efficient
systematic search for a solution, then P=NP. For any one NP-complete problem, if it
is in P, then necessarily P=NP.

1 Solvable – by an algorithm – in polynomially many steps on the size of the problem instances.
2 Solvable nondeterministically in polynomially many steps on the size of the problem instances.
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1.1 Graphs and their plane figures

Let V be a finite set, and denote by

E(V) = {{u, v} | u, v ∈ V, u 6= v} .

the 2-sets of V, i.e., subsets of two distinct elements.

DEFINITION. A pair G = (V, E) with E ⊆ E(V) is called a graph (on V). The elements
of V are the vertices of G, and those of E the edges of G. The vertex set of a graph G
is denoted by VG and its edge set by EG. Therefore G = (VG, EG).

In literature, graphs are also called simple graphs; vertices are called nodes or points;
edges are called lines or links. The list of alternatives is long (but still finite).

A pair {u, v} is usually written simply as uv. Notice that then uv = vu. In order to
simplify notations, we also write v ∈ G and e ∈ G instead of v ∈ VG and e ∈ EG.

DEFINITION. For a graph G, we denote

νG = |VG| and εG = |EG| .

The number νG of the vertices is called the order of G, and εG is the size of G. For an
edge e = uv ∈ G, the vertices u and v are its ends. Vertices u and v are adjacent or
neighbours, if uv ∈ G. Two edges e1 = uv and e2 = uw having a common end, are
adjacent with each other.

A graph G can be represented as a plane figure by
drawing a line (or a curve) between the points u and
v (representing vertices) if e = uv is an edge of G.
The figure on the right is a geometric representation
of the graph G with VG = {v1, v2, v3, v4, v5, v6} and
EG = {v1v2, v1v3, v2v3, v2v4, v5v6}.

v1

v2

v3

v4 v5

v6

Often we shall omit the identities (names v) of the vertices in our figures, in which
case the vertices are drawn as anonymous circles.

Graphs can be generalized by allowing loops vv and parallel (or multiple) edges
between vertices to obtain a multigraph G = (V, E, ψ), where E = {e1, e2, . . . , em} is
a set (of symbols), and ψ : E → E(V) ∪ {vv | v ∈ V} is a function that attaches an
unordered pair of vertices to each e ∈ E: ψ(e) = uv.

Note that we can have ψ(e1) = ψ(e2). This is drawn in
the figure of G by placing two (parallel) edges that con-
nect the common ends. On the right there is (a draw-
ing of) a multigraph G with vertices V = {a, b, c}
and edges ψ(e1) = aa, ψ(e2) = ab, ψ(e3) = bc, and
ψ(e4) = bc.

a

b

c
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Later we concentrate on (simple) graphs.

DEFINITION. We also study directed graphs or digraphs
D = (V, E), where the edges have a direction, that is, the
edges are ordered: E ⊆ V × V. In this case, uv 6= vu.

The directed graphs have representations, where the edges are drawn as arrows.
A digraph can contain edges uv and vu of opposite directions.

Graphs and digraphs can also be coloured, labelled, and weighted:

DEFINITION. A function α : VG → K is a vertex colouring of G by a set K of colours.
A function α : EG → K is an edge colouring of G. Usually, K = [1, k] for some k ≥ 1.

If K ⊆ R (often K ⊆ N), then α is a weight function or a distance function.

Isomorphism of graphs

DEFINITION. Two graphs G and H are isomorphic, denoted by G ∼= H, if there exists
a bijection α : VG → VH such that

uv ∈ EG ⇐⇒ α(u)α(v) ∈ EH

for all u, v ∈ G.

Hence G and H are isomorphic if the vertices of H are renamings of those of G.
Two isomorphic graphs enjoy the same graph theoretical properties, and they are often
identified. In particular, all isomorphic graphs have the same plane figures (excepting
the identities of the vertices). This shows in the figures, where we tend to replace the
vertices by small circles, and talk of ‘the graph’ although there are, in fact, infinitely
many such graphs.
Example 1.1. The following graphs are
isomorphic. Indeed, the required iso-
morphism is given by v1 7→ 1, v2 7→ 3,
v3 7→ 4, v4 7→ 2, v5 7→ 5. v1

v2 v3

v4

v5 1

3

42

5

Isomorphism Problem. Does there exist an efficient algorithm to check whether any two
given graphs are isomorphic or not?

The following table lists the number 2(
n
2) of all graphs on a given set of n vertices,

and the number of all nonisomorphic graphs on n vertices. It tells that at least for
computational purposes an efficient algorithm for checking whether two graphs are
isomorphic or not would be greatly appreciated.

n 1 2 3 4 5 6 7 8 9

graphs 1 2 8 64 1024 32 768 2 097 152 268 435 456 236 > 6 · 1010

nonisomorphic 1 2 4 11 34 156 1044 12 346 274 668
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Other representations

Plane figures catch graphs for our eyes, but if a problem on graphs is to be pro-
grammed, then these figures are, to say the least, unsuitable. Integer matrices are ideal
for computers, since every respectable programming language has array structures
for these, and computers are good in crunching numbers.

Let VG = {v1, . . . , vn} be ordered. The adjacency ma-
trix of G is the n × n-matrix M with entries Mij = 1
or Mij = 0 according to whether vivj ∈ G or vivj /∈ G.
For instance, the graph in Example 1.1 has an adja-
cency matrix on the right. Notice that the adjacency
matrix is always symmetric (with respect to its diag-
onal consisting of zeros).




0 1 1 0 1
1 0 0 1 1
1 0 0 1 0
0 1 1 0 0
1 1 0 0 0




A graph has usually many different adjacency matrices, one for each ordering of
its set VG of vertices. The following result is obvious from the definitions.

Theorem 1.1. Two graphs G and H are isomorphic if and only if they have a common adja-
cency matrix. Moreover, two isomorphic graphs have exactly the same set of adjacency matri-
ces.

Graphs can also be represented by sets. For this, let X = {X1, X2, . . . , Xn} be a
family of subsets of a set X, and define the intersection graph GX as the graph with
vertices X1, . . . , Xn, and edges XiXj for all i and j (i 6= j) with Xi ∩ Xj 6= ∅.

Theorem 1.2. Every graph is an intersection graph of some family of subsets.

Proof. Let G be a graph, and define, for all v ∈ G, a set

Xv = {{v, u} | vu ∈ G}.

Then Xu ∩ Xv 6= ∅ if and only if uv ∈ G. ⊓⊔

Let s(G) be the smallest size of a base set X such that G can be represented as an
intersection graph of a family of subsets of X, that is,

s(G) = min{|X| | G ∼= GX for some X ⊆ 2X} .

How small can s(G) be compared to the order νG (or the size εG) of the graph? It was
shown by KOU, STOCKMEYER AND WONG (1976) that it is algorithmically difficult to
determine the number s(G) – the problem is NP-complete.

Example 1.2. As yet another example, let A ⊆ N be a finite set of natural numbers,
and let GA = (A, E) be the graph with rs ∈ E if and only if r and s (for r 6= s) have a
common divisor > 1. As an exercise, we state: All graphs can be represented in the form
GA for some set A of natural numbers.
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1.2 Subgraphs

Ideally, given a nice problem the local properties of a graph determine a solution.
In these situations we deal with (small) parts of the graph (subgraphs), and a solu-
tion can be found to the problem by combining the information determined by the
parts. For instance, as we shall later see, the existence of an Euler tour is very local, it
depends only on the number of the neighbours of the vertices.

Degrees of vertices

DEFINITION. Let v ∈ G be a vertex a graph G. The neighbourhood of v is the set

NG(v) = {u ∈ G | vu ∈ G} .

The degree of v is the number of its neighbours:

dG(v) = |NG(v)| .

If dG(v) = 0, then v is said to be isolated in G, and if dG(v) = 1, then v is a leaf of the
graph. The minimum degree and the maximum degree of G are defined as

δ(G) = min{dG(v) | v ∈ G} and ∆(G) = max{dG(v) | v ∈ G} .

The following lemma, due to EULER (1736), tells that if several people shake
hands, then the number of hands shaken is even.

Lemma 1.1 (Handshaking lemma). For each graph G,

∑
v∈G

dG(v) = 2 · εG .

Moreover, the number of vertices of odd degree is even.

Proof. Every edge e ∈ EG has two ends. The second claim follows immediately from
the first one. ⊓⊔

Lemma 1.1 holds equally well for multigraphs, when dG(v) is defined as the num-
ber of edges that have v as an end, and when each loop vv is counted twice.

Note that the degrees of a graph G do not determine G. Indeed, there are graphs
G = (V, EG) and H = (V, EH) on the same set of vertices that are not isomorphic, but
for which dG(v) = dH(v) for all v ∈ V.
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Subgraphs

DEFINITION. A graph H is a subgraph of a graph G, denoted by H ⊆ G, if VH ⊆ VG

and EH ⊆ EG. A subgraph H ⊆ G spans G (and H is a spanning subgraph of G), if
every vertex of G is in H, i.e., VH = VG.

Also, a subgraph H ⊆ G is an induced subgraph, if EH = EG ∩ E(VH). In this
case, H is induced by its set VH of vertices.

In an induced subgraph H ⊆ G, the set EH of edges consists of all e ∈ EG such that
e ∈ E(VH). To each nonempty subset A ⊆ VG, there corresponds a unique induced
subgraph

G[A] = (A, EG ∩ E(A)) .

To each subset F ⊆ EG of edges there corresponds a unique spanning subgraph of G,

G[F] = (VG, F) .

G subgraph spanning induced

For a set F ⊆ EG of edges, let

G−F = G[EG \ F]

be the subgraph of G obtained by removing (only) the edges e ∈ F from G. In partic-
ular, G−e is obtained from G by removing e ∈ G.

Similarly, we write G + F, if each e ∈ F (for F ⊆ E(VG)) is added to G.

For a subset A ⊆ VG of vertices, we let G−A ⊆ G be the subgraph induced by
VG \ A, that is,

G−A = G[VG \ A] ,

and, e.g., G−v is obtained from G by removing the vertex v together with the edges
that have v as their end.

Reconstruction Problem. The famous open problem, Kelly-Ulam problem or the Re-
construction Conjecture, states that a graph of order at least 3 is determined up to isomor-
phism by its vertex deleted subgraphs G−v (v ∈ G): if there exists a bijection α : VG → VH

such that G−v ∼= H−α(v) for all v, then G ∼= H.
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2-switches

DEFINITION. For a graph G, a 2-switch with respect
to the edges uv, xy ∈ G with ux, vy /∈ G replaces the
edges uv and xy by ux and vy. Denote

G
2s
−→ H

if there exists a finite sequence of 2-switches that car-
ries G to H.

u

v

x

y

u

v

x

y

Note that if G
2s
−→ H then also H

2s
−→ G since we can apply the sequence of 2-

switches in reverse order.
Before proving Berge’s switching theorem we need the following tool.

Lemma 1.2. Let G be a graph of order n with a degree sequence d1 ≥ d2 ≥ · · · ≥ dn, where

dG(vi) = di. Then there is a graph G′ such that G
2s
−→ G′ with NG′(v1) = {v2, . . . , vd1+1}.

Proof. Let d = ∆(G) (= d1). Suppose that there is a vertex vi with 2 ≤ i ≤ d + 1 such
that v1vi /∈ G. Since dG(v1) = d, there exists a vj with
j ≥ d + 2 such that v1vj ∈ G. Here di ≥ dj, since j > i.
Since v1vj ∈ G, there exists a vt (2 ≤ t ≤ n) such that
vivt ∈ G, but vjvt /∈ G. We can now perform a 2-switch
with respect to the vertices v1, vj, vi, vt. This gives a new
graph H, where v1vi ∈ H and v1vj /∈ H, and the other
neighbours of v1 remain to be its neighbours.

v1 vi vj

vt

When we repeat this process for all indices i with v1vi /∈ G for 2 ≤ i ≤ d + 1, we
obtain a graph G′ as required. ⊓⊔

Theorem 1.3 (BERGE (1973)). Two graphs G and H on a common vertex set V satisfy
dG(v) = dH(v) for all v ∈ V if and only if H can be obtained from G by a sequence of
2-switches.

Proof. If G
2s
−→ H, then clearly H has the same degrees as G.

In converse, we use induction on the order νG. Let G and H have the same degrees.

By Lemma 1.2, we have a vertex v and graphs G′ and H′ such that G
2s
−→ G′ and

H
2s
−→ H′ with NG′(v) = NH′(v). Now the graphs G′−v and H′−v have the same

degrees. By the induction hypothesis, G′−v
2s
−→ H′−v, and thus also G′ 2s

−→ H′.

Finally, we observe that H′ 2s
−→ H by the ‘reverse 2-switches’, and this proves the

claim. ⊓⊔

DEFINITION. Let d1, d2, . . . , dn be a descending sequence of nonnegative integers, that
is, d1 ≥ d2 ≥ · · · ≥ dn. Such a sequence is said to be graphical, if there exists a graph
G = (V, E) with V = {v1, v2, . . . , vn} such that di = dG(vi) for all i.
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Using the next result recursively one can decide whether a sequence of integers is
graphical or not.

Theorem 1.4 (HAVEL (1955), HAKIMI (1962)). A sequence d1, d2, . . . , dn (with d1 ≥ 1 and
n ≥ 2) is graphical if and only if

d2 − 1, d3 − 1, . . . , dd1+1 − 1, dd1+2, dd1+3, . . . , dn (1.1)

is graphical (when put into nonincreasing order).

Proof. (⇐) Consider G of order n − 1 with vertices (and degrees)

dG(v2) = d2 − 1, . . . , dG(vd1+1) = dd1+1 − 1,

dG(vd1+2) = dd1+2, . . . , dG(vn) = dn

as in (1.1). Add a new vertex v1 and the edges v1vi for all i ∈ [2, dd1+1]. Then in the
new graph H, dH(v1) = d1, and dH(vi) = di for all i.

(⇒) Assume dG(vi) = di. By Lemma 1.2 and Theorem 1.3, we can suppose that
NG(v1) = {v2, . . . , vd1+1}. But now the degree sequence of G−v1 is in (1.1). ⊓⊔

Example 1.3. Consider the sequence s = 4, 4, 4, 3, 2, 1. By Theorem 1.4,

s is graphical ⇐⇒ 3, 3, 2, 1, 1 is graphical

2, 1, 1, 0 is graphical

0, 0, 0 is graphical.

The last sequence corresponds to a graph with no
edges, and hence also our original sequence s is graph-
ical. Indeed, the graph G on the right has this degree
sequence.

v1

v2

v3

v4

v5

v6

Special graphs

DEFINITION. A graph G = (V, E) is trivial, if it has only one vertex, i.e., νG = 1;
otherwise G is nontrivial.

The graph G = KV is the complete graph on V, if every
two vertices are adjacent: E = E(V). All complete graphs
of order n are isomorphic with each other, and they will be
denoted by Kn.

The complement of G is the graph G on VG, where EG = {e ∈ E(V) | e /∈ EG}. The
complements G = KV of the complete graphs are called discrete graphs. In a discrete
graph EG = ∅. Clearly, all discrete graphs of order n are isomorphic with each other.

A graph G is said to be regular, if every vertex of G has the same degree. If this
degree is equal to r, then G is r-regular or regular of degree r.
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A discrete graph is 0-regular, and a complete graph Kn is (n − 1)-regular. In par-
ticular, εKn = n(n − 1)/2, and therefore εG ≤ n(n − 1)/2 for all graphs G that have
order n.

Many problems concerning (induced) subgraphs are algorithmically difficult. For
instance, to find a maximal complete subgraph (a subgraph Km of maximum order)
of a graph is unlikely to be even in NP.

Example 1.4. The graph on the right is the Petersen
graph that we will meet several times (drawn differ-
ently). It is a 3-regular graph of order 10.

Example 1.5. Let k ≥ 1 be an integer, and consider the set B
k of all binary strings

of length k. For instance, B
3 = {000, 001, 010, 100, 011, 101, 110, 111}. Let Qk be the

graph, called the k-cube, with VQk
= B

k, where uv ∈ Qk if and only if the strings u
and v differ in exactly one place.

The order of Qk is νQk
= 2k, the number of binary

strings of length k. Also, Qk is k-regular, and so, by the
handshaking lemma, εQk

= k · 2k−1. On the right we
have the 3-cube, or simply the cube.

000

100 101

001

010

110 111

011

Example 1.6. Let n ≥ 4 be any even number. We show by induction that there exists
a 3-regular graph G with νG = n. Notice that all 3-regular graphs have even order by
the handshaking lemma.

If n = 4, then K4 is 3-regular. Let G be a 3-regular
graph of order 2m − 2, and suppose that uv, uw ∈ EG.
Let VH = VG ∪ {x, y}, and EH = (EG \ {uv, uw}) ∪
{ux, xv, uy, yw, xy}. Then H is 3-regular of order 2m.

u

vw

x y

1.3 Paths and cycles

The most fundamental notions in graph theory are practically oriented. Indeed, many
graph theoretical questions ask for optimal solutions to problems such as: find a
shortest path (in a complex network) from a given point to another. This kind of
problems can be difficult, or at least nontrivial, because there are usually choices what
branch to choose when leaving an intermediate point.

Walks

DEFINITION. Let ei = uiui+1 ∈ G be edges of G for i ∈ [1, k]. The sequence W =
e1e2 . . . ek is a walk of length k from u1 to uk+1. Here ei and ei+1 are compatible in the
sense that ei is adjacent to ei+1 for all i ∈ [1, k − 1].
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We write, more informally,

W : u1 −→ u2 −→ . . . −→ uk −→ uk+1 or W : u1
k
−→ uk+1 .

Write u ⋆−→ v to say that there is a walk of some length from u to v. Here we under-
stand that W : u ⋆−→ v is always a specific walk, W = e1e2 . . . ek, although we sometimes
do not care to mention the edges ei on it. The length of a walk W is denoted by |W|.

DEFINITION. Let W = e1e2 . . . ek (ei = uiui+1) be a walk.
W is closed, if u1 = uk+1.
W is a path, if ui 6= uj for all i 6= j.
W is a cycle, if it is closed, and ui 6= uj for i 6= j except that u1 = uk+1.
W is a trivial path, if its length is 0. A trivial path has no edges.
For a walk W : u = u1 −→ . . . −→ uk+1 = v, also

W−1 : v = uk+1 −→ . . . −→ u1 = u

is a walk in G, called the inverse walk of W.
A vertex u is an end of a path P, if P starts or ends in u.
The join of two walks W1 : u ⋆−→ v and W2 : v ⋆−→ w is the walk W1W2 : u ⋆−→ w.

(Here the end v must be common to the walks.)
Paths P and Q are disjoint, if they have no vertices in common, and they are

independent, if they can share only their ends.

Clearly, the inverse walk P−1 of a path P is a path (the inverse path of P). The join
of two paths need not be a path.

A (sub)graph, which is a path (cycle) of length
k − 1 (k, resp.) having k vertices is denoted by
Pk (Ck, resp.). If k is even (odd), we say that the
path or cycle is even (odd). Clearly, all paths of
length k are isomorphic. The same holds for cy-
cles of fixed length.

P5 C6

Lemma 1.3. Each walk W : u ⋆−→ v with u 6= v contains a path P : u ⋆−→ v, that is, there is a
path P : u ⋆−→ v that is obtained from W by removing edges and vertices.

Proof. Let W : u = u1 −→ . . . −→ uk+1 = v. Let i < j be indices such that ui = uj.
If no such i and j exist, then W, itself, is a path. Otherwise, in W = W1W2W3 : u ⋆−→
ui

⋆−→ uj
⋆−→ v the portion U1 = W1W3 : u ⋆−→ ui = uj

⋆−→ v is a shorter walk. By
repeating this argument, we obtain a sequence U1, U2, . . . , Um of walks u ⋆−→ v with
|W| > |U1| > · · · > |Um|. When the procedure stops, we have a path as required.
(Notice that in the above it may very well be that W1 or W3 is a trivial walk.) ⊓⊔
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DEFINITION. If there exists a walk (and hence a path) from u to v in G, let

dG(u, v) = min{k | u
k
−→ v}

be the distance between u and v. If there are no walks u ⋆−→ v, let dG(u, v) = ∞ by
convention. A graph G is connected, if dG(u, v) < ∞ for all u, v ∈ G; otherwise, it
is disconnected. The maximal connected subgraphs of G are its connected compo-
nents. Denote

c(G) = the number of connected components of G .

If c(G) = 1, then G is, of course, connected.

The maximality condition means that a subgraph H ⊆ G is a connected compo-
nent if and only if H is connected and there are no edges leaving H, i.e., for every ver-
tex v /∈ H, the subgraph G[VH ∪ {v}] is disconnected. Apparently, every connected
component is an induced subgraph, and

N∗
G(v) = {u | dG(v, u) < ∞}

is the connected component of G that contains v ∈ G. In particular, the connected
components form a partition of G.

Shortest paths

DEFINITION. Let Gα be an edge weighted graph, that is, Gα is a graph G together
with a weight function α : EG → R on its edges. For H ⊆ G, let

α(H) = ∑
e∈H

α(e)

be the (total) weight of H. In particular, if P = e1e2 . . . ek is a path, then its weight is
α(P) = ∑

k
i=1 α(ei). The minimum weighted distance between two vertices is

dα
G(u, v) = min{α(P) | P : u ⋆−→ v} .

In extremal problems we seek for optimal subgraphs H ⊆ G satisfying specific
conditions. In practice we encounter situations where G might represent

• a distribution or transportation network (say, for mail), where the weights on
edges are distances, travel expenses, or rates of flow in the network;

• a system of channels in (tele)communication or computer architecture, where the
weights present the rate of unreliability or frequency of action of the connections;

• a model of chemical bonds, where the weights measure molecular attraction.
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In these examples we look for a subgraph with the smallest weight, and which
connects two given vertices, or all vertices (if we want to travel around). On the other
hand, if the graph represents a network of pipelines, the weights are volumes or
capacities, and then one wants to find a subgraph with the maximum weight.

We consider the minimum problem. For this, let G be a graph with an integer
weight function α : EG → N. In this case, call α(uv) the length of uv.

The shortest path problem: Given a connected graph G with a weight function α : EG →
N, find dα

G(u, v) for given u, v ∈ G.

Assume that G is a connected graph. Dijkstra’s algorithm solves the problem for
every pair u, v, where u is a fixed starting point and v ∈ G. Let us make the conven-
tion that α(uv) = ∞, if uv /∈ G.

Dijkstra’s algorithm:

(i) Set u0 = u, t(u0) = 0 and t(v) = ∞ for all v 6= u0.

(ii) For i ∈ [0, νG − 1]: for each v /∈ {u1, . . . , ui},

replace t(v) by min{t(v), t(ui) + α(uiv)} .

Let ui+1 /∈ {u1, . . . , ui} be any vertex with the least value t(ui+1).

(iii) Conclusion: dα
G(u, v) = t(v).

Example 1.7. Consider the following weighted graph G. Apply Dijkstra’s algorithm
to the vertex v0.

• u0 = v0, t(u0) = 0, others are ∞.

• t(v1) = min{∞, 2} = 2, t(v2) = min{∞, 3} = 3,
others are ∞. Thus u1 = v1.

• t(v2) = min{3, t(u1) + α(u1v2)} = min{3, 4} = 3,
t(v3) = 2 + 1 = 3, t(v4) = 2 + 3 = 5, t(v5) = 2 + 2 = 4.
Thus choose u2 = v3.

• t(v2) = min{3, ∞} = 3, t(v4) = min{5, 3 + 2} = 5,
t(v5) = min{4, 3 + 1} = 4. Thus set u3 = v2.

v0

v1

v2

v3

v4

v5

2

3

1

3 2

1

2

1

2

2

• t(v4) = min{5, 3 + 1} = 4, t(v5) = min{4, ∞} = 4. Thus choose u4 = v4.

• t(v5) = min{4, 4 + 1} = 4. The algorithm stops.

We have obtained:

t(v1) = 2, t(v2) = 3, t(v3) = 3, t(v4) = 4, t(v5) = 4 .

These are the minimal weights from v0 to each vi.
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The steps of the algorithm can also be rewritten as a table:

v1 2 - - - -
v2 3 3 3 - -
v3 ∞ 3 - - -
v4 ∞ 5 5 4 -
v5 ∞ 4 4 4 4

The correctness of Dijkstra’s algorithm can verified be as follows.
Let v ∈ V be any vertex, and let P : u0

⋆−→ u ⋆−→ v be a shortest path from u0 to v,
where u is any vertex u 6= v on such a path, possibly u = u0. Then, clearly, the first
part of the path, u0

⋆−→ u, is a shortest path from u0 to u, and the latter part u ⋆−→ v
is a shortest path from u to v. Therefore, the length of the path P equals the sum of
the weights of u0

⋆−→ u and u ⋆−→ v. Dijkstra’s algorithm makes use of this observation
iteratively.


