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Abstract—This paper improves upon an existing Watershed
algorithm-based clustering method. The existing method uses
an experimentally determined parameter to construct a density
function. A better method for evaluating the cell/window size
(used in the construction of the density function) is proposed,
eliminating the need for arbitrary parameters. The algorithm
has been tested on both published and unpublished synthetic
data, and the results demonstrate that the proposed approach is
able to accurately estimate the number of clusters present in the
data.
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I. INTRODUCTION

Clustering or Cluster Analysis refers to the process of

classifying data into meaningful homogeneous groups, and is a

type of unsupervised classification. Clustering is a particularly

difficult problem since the interpretation of the resulting clus-

ters and their number depends upon domain-specific knowl-

edge, practical experience, possible assumptions involved and

human intuition [1]. An effective clustering method is often

a well-balanced combination of data pre-processing methods,

distance metrics, criterion functions, searching and sorting

algorithms, and strategies to handle outliers and missing values

[2].

Clustering algorithms are categorized into partitioning, hier-

archical, density-based, grid-based, and model-based methods.

Each method has its own set of advantages and disadvantages.

Some work has also been devoted to combining several clus-

tering methods into one algorithm [2]. There are two central

issues that almost all clustering algorithms should address [3]:

(1) Into how many clusters should the data be classified?

and (2) How should data be classified, once the number of

clusters has been decided? The former is considered to be

a more difficult problem than the latter. Several clustering

methods have been proposed that try to determine the “natural”

/ “optimum” number of clusters [1], [4]–[8]. To work properly,

most algorithms require at least one parameter to be provided

by the user, such as the number of clusters present in the

dataset, or a parameter that in turn governs the number of

clusters that can be detected. Selecting the “right” values for

such parameters might be trivial in some cases, but it can

often become impractical and infeasible due to the size and

dimensionality of the data or other constraints.

TABLE I
“CORRECT” NUMBER OF CLUSTERS FOR EACH DATASET

Dataset Cluster Count Dataset Cluster Count

S1 15 A3 50

S2 15 V1 12

S3 15 V2 9

S4 15 V3 13

A1 20 Z1 1

A2 35 Z2 49

The clustering algorithm proposed in this paper, and its

predecessor [9], are grid-based methods, and also share some

features with density-based methods. A major advantage of

both these methods is that they do not require the user to

provide parameters.

II. DATASETS

A total of 12 synthetic datasets were used for the testing

of the method proposed in this paper. While 7 of the datasets

(S1-S4, A1-A3) were imported [10], the other 5 datasets (V1-

V3, Z1-Z2) were created by the authors to test particular

aspects of the proposed algorithm. Datasets S1-S4 have 15

clusters and 5000 points, each with various degrees of overlap.

Datasets A1-A3 have varying numbers of data points and

clusters [10]. Datasets V1-V3 have various degrees of overlap,

and perhaps even multiple interpretations. Datasets Z1 and Z2

have interpretations that are scale-dependent. Visualizations of

the datasets are provided in Fig.1a - 1l. Table I displays the

“correct” number of clusters for each dataset, as determined

by human inspection.

III. THE EXISTING METHOD

The Watershed algorithm was developed from the fields

of Image Processing and Mathematical Morphology, and is

a region-based image segmentation method. The Watershed

algorithm borrows its intuitive idea from geography - when a

landscape or a topographic relief is flooded by water, water

collects in catchment regions, and the catchment regions are

divided by watershed lines [11].

The existing method [9] proposes that a grid be constructed

over the feature space and then a density function be defined



(a) Dataset - S1 (b) Dataset - S2 (c) Dataset - S3 (d) Dataset - S4

(e) Dataset - A1 (f) Dataset - A2 (g) Dataset - A3 (h) Dataset - V1

(i) Dataset - V2 (j) Dataset - V3 (k) Dataset - Z1 (l) Dataset - Z2

Fig. 1. Datasets used for testing

over the grid. The density of each cell of the grid is treated as

a height. Thus the density function takes on an interpretation

of a landscape (3-D landscape for 2-D dataset). This landscape

is then inverted and subjected to the Watershed algorithm.

As a result of the Watershed algorithm, the minima in the

inverted landscape, corresponding to the high density regions

in the grid, are detected. Thus clusters are implicitly defined

as regions of high density in the feature space, and are marked

by corresponding catchment regions in the inverted landscape.

The number of catchment regions found is taken to be the

number of clusters present, and the catchment region itself

represents the region spanned by the corresponding cluster.

The formal representation according to Bicego et al. [9] is as

follows. Let Y = y1,y2, ...,yn represent the dataset where

each observation is yi = yi,1, yi,2, ..., yi,D. A grid with cells

as D-dimensioned hypercubes of fixed size lR is defined over

the feature space with an origin O:

O = [
n

min
i=1

yi,1,
n

min
i=1

yi,2, ...,
n

min
i=1

yi,D] (1)

A cell in the position i = (i1, i2, ..., iD) is denoted as R(i) =
R(i1, i2, ..., iD). Once lR is chosen (a choice which is critical

and discussed later), a grid with
(

k
lR

)D

cells spans the feature

space, where k represents the maximum dimension width of

the feature space, and is defined as follows:

k =
D

max
j=1

(

n
max
i=1

yi,j −
n

min
i=1

yi,j

)

(2)

The height function for the grid upon which the Watershed

algorithm to operate, is then defined: the value of the function

I(R(i)) in a cell is the number of points that belong to that

cell. The function I(R(i)) is defined as:

I(R(i)) =
∑

yn∈Y

χR(i)(yn) (3)

where χ is the characteristic function of the set R(i), and is

defined as:

χR(i)(yn) =

{

1 if yn ∈ R(i);
0 otherwise;

(4)

The function I(R(i)) (landscape) is an approximation of the

density properties of the feature space, with an underlying as-

sumption that similar points (points that are to be grouped into

the same cluster) are near in the feature space (Assumption-1).

The function values are inverted so that the local maxima mark

the minima and vice-versa. The Watershed algorithm then

marks the catchment regions present in the inverted landscape

and thus the number of clusters is obtained.

Choosing the right value for lR is critical for the afore-

mentioned method to work meaningfully. Choosing too large

a value results in coarse-segmentation, and too small a value

will result in over-segmentation.

Bicego et al. [9] suggest that the value of lR should be

estimated for the data that is to be clustered. It is stated

that a “good” value for lR can be obtained by using the

median of pairwise distances between all points. All distances

d(yi,yj)[∀i, j ∈ 1...n] are computed and then the median of

all those distances is computed. From the data, the value for

lR is calculated by:

lR =
median(d(yi,yj))

m
(5)

In eq(5), m is a constant and is experimentally fixed at

4 for all the datasets evaluated by Bicego et al. [9]. It is

suspected that this experimentally fixed value of m = 4 may

not work well for all datasets. This is demonstrated with one

of the datasets introduced in Section II. Fig.2a - 2d display

the landscape for dataset A1 using m = 1,m = 4,m = 10
& m = 16 respectively. Fig.2a reveals that m = 1 produces

too coarse a grid for dataset A1, and hence information about

the number of clusters is lost during the construction of the

landscape. Fig.2b shows that m = 4 produces a landscape that

does not show 20 peaks corresponding to the clusters. Fig.2c

shows that m = 10 produces a landscape that displays 20

peaks corresponding to the clusters. Fig.2d shows that m = 16
produces a landscape displaying many more than 20 peaks.

Landscapes were constructed for the remaining datasets and

the results told a similar tale, confirming the earlier suspicion

that m = 4 does not work for all datasets. From Fig.2a-2d it

can also be seen that the landscape has a rather “abrupt” and

“angular” nature as opposed to a “continuous” and “smooth”

one, even for the cases where the number of peaks may be

correctly perceived.

Since m influences the size of the cell on the grid and

thus the construction of the landscape, fixing the value of

m as a constant for all datasets is a major drawback of the

existing method. Bicego et al. [9] duly acknowledge that future

investigations should target construction of the grid to improve

the existing method.

IV. A NEW PROPOSED METHOD

In the method proposed here, the major emphasis is on

selecting the most appropriate cell size, which will be shown



(a) Dataset - A1 - m = 1 (b) Dataset - A1 - m = 4 (c) Dataset - A1 - m = 10 (d) Dataset - A1 - m = 16

Fig. 2. Density landscapes generated using existing method

to produce the most significant contribution. The method

proposed here closely follows the central theme of the method

described in Section III, and can be viewed as an improved

version.

It is widely known that data can display different structures

at different scales [12]. The term “scale” as applied to a given

dataset can be loosely interpreted as the size of the smallest

spatial structure that can be perceived from the dataset. Any

structures smaller than a given “scale” have been suppressed

in the rendering of the data at that scale. Since clustering

can be interpreted as a method for detecting structure present

in the data, different structures may be detected at different

scales. For example: at very large scales all the data will be

treated as one cluster, and at very small scales each data point

can be treated as a cluster. Meaningful structures, and thus

meaningful clusters, will be perceived when operating at the

“right” scale(s) for the data. Thus, clustering methods should

consider scale to accurately detect the number of clusters while

operating on a given dataset [6].

In the existing method described in Section III and the

method proposed here, scale relates to the size of the cell,

based upon which the grid is constructed. From here on, use

of the term “scale” will loosely refer to the cell size used to

construct the grid.

In order to handle scale, some sort of smoothing operations

might need to be performed. It is also known that smoothing

operations need to abide by certain scale-space axioms. The

Gaussian kernel satisfies these axioms and hence is the kernel

of choice for the work that follows. Use of other kernels for

smoothing is possible [12].

A. Construction of Matrix Form for a dataset

To implement the smoothing operation using the Gaussian

kernel, both the dataset as well as the Gaussian kernel should

be transformed to matrix forms so that the convolution opera-

tion may be performed easily. To construct a matrix form for

a given dataset, a grid is constructed over the feature space, in

a fashion similar to that in Section III. With Y and yi defined

as in Section III, define dcw as the cell size, given by:

dcw =

min
∀i,j∈1...n

(d(yi,yj))

(2 + ǫ)
(6)

where d(yi,yj) represents the distance between yi & yj, and ǫ

is any positive real number. This is inspired from the Nyquist-

Shannon sampling theorem [13], and ǫ→ 0 marks the limiting

condition specified by the theorem for no loss of information.

This should result in a gridMw1,w2,...,wD
with a size of wi in

the ith dimension.M is a matrix representation of the dataset

without any loss of information.

B. Gaussian Kernels for smoothing

Let Kt represent the sampled version of the Gaussian kernel

Gt given by:

Gt(x) =
1

√

(2π)(D/2)|Σ|
e(

1
2 (−x′Σ−1x)) (7)

where Σ is the covariance matrix for the Gaussian kernel given

as:

Σ =













t1 0 . . 0
0 t2 0 . .

. 0 . 0 .

. . 0 tD−1 0
0 . . 0 tD













(8)

where ti is the standard deviation of the ith dimension and |Σ|
is the determinant of the covariance matrix. When employing

Kt for smoothing M, any spatial structural detail whose size

is less than ti will be suppressed in the ith dimension. Also

when operating uponM, ti has two meaningful limits: (1) the

smallest meaningful value ti can assume is 1, since the matrix

would not contain any information about structures whose

size is less than a single cell; and (2) the largest meaningful

value ti can assume is wi, since the matrix would not contain

complete information about structures whose size is larger than

the matrix itself.

C. Generating Landscapes for a dataset

Consider scale index (SI), related to ti, by:

ti =
wi

2(SI−1)

1≤SI≤[1 + log2(min(w1, w2, ..., wD))]
(9)

where wi is the width of M in the ith dimension, and ti is

the scale for the ith dimension. SI is used to ensure that all

dimensions in the features space (and hence all dimensions of

M) are given equal weight.

A landscape LSI relating to scale index SI may be gener-

ated for a dataset by convolving the matrix representation of

the datasetM with the sampled version of the D-dimensional



(a) S1 : SI = 1 (b) S1 : SI = 4 (c) S1 : SI = 6 (d) S1 : SI = 9

(e) S1 : SI = 1 (f) S1 : SI = 4 (g) S1 : SI = 6 (h) S1 : SI = 9

Fig. 3. Density landscapes (a)-(d) and corresponding watersheds (e)-(h)
results generated for S1 using SI = 1, 4, 6,&9

Gaussian kernel. Since the Gaussian kernel is separable:

Li =

{

M∗Kti if i=1;

Li−1 ∗Kti otherwise;
(10)

where the convolution operation “∗” is performed along the ith

dimension with Kti (the sampled version of the 1-dimensional

Gaussian kernel with standard deviation ti). The final result

(LSI ) is the matrix resulting after the convolution is performed

along the Dth dimension (LD).

The landscape LSI will have a structure that does not

contain details smaller than ti in the corresponding ith di-

mension. The landscape also can be interpreted as a weighted

density function. The weights are dictated by the values of

the elements of the Gaussian kernel used in the process of

convolution. The height of the mound at a particular point in

the landscape is determined by the density of M at that point

and the value of SI used to generate the the Gaussian kernel,

and in turn the landscape. Fig.3a-3d display the landscapes

for dataset S1 generated for SI = 1, 4, 6&9. Fig.3a, 3b

show only one large mound, indicating that at those scales,

the data points can all be grouped into one cluster. Fig.3c

(SI = 6) clearly show 15 smooth mounds indicating that

at these scales, the data can be grouped into 15 clusters.

Fig.3d has 15 dominating peaks, but also contain several

other “noisy” spikes. Construction of landscapes for other

datasets using for a range of values of SI resulted in similar

observations.

Fig.3e - 3h display the results of subjecting the landscapes

(Fig.3a-3d) to the Watershed algorithm. It can be seen from

Fig.3e - 3f that the corresponding landscapes resulted in too

coarse a clustering (coarse-segmentation). Fig.3g (SI = 6)

shows that the corresponding landscapes resulted in the “cor-

rect” number of clusters. Fig.3h shows that the corresponding

landscape resulted in too fine a clustering (over-segmentation).

The problem now lies in selecting the “optimal” value of

SI to construct a “best” landscape on which to execute the

Watershed algorithm.

D. Selection of Optimal Scale Index

The selection of the optimal scale index SIopt is critical,

since it governs the scale at which the landscape is generated

for the given dataset. If the scale is selected appropriately, it

will result in a landscape that reflects the underlying cluster

structure “well”.

A heuristic from the observation of the density landscapes

for a given dataset (and the corresponding watershed results)

is: Select the scale index which generates the landscape in

which the base-width appears to be roughly proportional to

mound-height for the majority of the mounds perceived in the

landscape. A quantitative version (or an approximation) of

this heuristic would assist in automating the selection of the

optimal scale index (SIopt), and this is given in what follows.

Observation of histograms of “height” data (shall be referred

to as Z from here on) in the landscapes for several values

of SI hints that metrics of statistical dispersion should reach

maxima for landscapes generated using the optimal scale

index. Several measures of dispersion were computed for Z for

various SI: Standard Deviation and Range (Fig.4a); Several

indices of qualitative variation (MODVR, RANVR, AVDEV,

MNDIF, VARNC, STDEV, and HREL) due to Wilcox [14]

(Fig.4b); and Inter-Quartile Range (IQR) [15] and Median

Absolute Deviation (MAD) [15] (Fig.4c). Only IQR & MAD

reveal some clearly defined peaks. Since both IQR and MAD

are robust measures of statistical dispersion, they are outlier-

resistant [16]. The clearly defined peaks produced with IQR

and MAD hinted that some sort of a filter should be applied

to the height data Z before the variation indices are evaluated

to make the variation indices less vulnerable to outliers in the

height data. A technique developed by Tukey [15] is applied

to the height data Z . All values of Z in the range [Zll, Zul]
in eq(11) are accepted, and any values outside that range are

filtered out during the evaluation of the variation index. Zll

and Zul are defined as follows:

Zll = Z25 − 1.5·IQR

Zul = Z75 + 1.5·IQR
(11)

where Z25 and Z75 are the 25 and 75 percentile values of Z
respectively, and IQR is the Inter-Quartile Range of Z .

When Standard Deviation was computed for filtered Z for

several values of SI , well defined peaks were observed. After

the Tukey filter is applied to the height data Z , the scale

index SI that maximizes the Standard Deviation is selected as

the optimal scale index SIopt. An iterative search procedure

is used to find the value of SIopt. Fig.4d shows how the

variation index changes with respect to the scale index, and

this demonstrates the peaking we seek.

E. Detection of Clusters - Count & Location

Once the optimal scale index SIopt has been found, the

related optimal landscape (LSopt) is generated. Fig.5 shows

the optimal landscape for dataset S1. This landscape is then

inverted as described by:

LSinv = max(LSopt)− LSopt (12)

The inverted landscape LSinv can then be subject to the

Watershed algorithm to detect the catchment regions. The

number of catchment regions yields the number of clusters,



(a) Range & Standard Deviation (b) MODVR, RANVR, AVDEV,
MNDIF, VARNC, STDEV &
HREL

(c) IQR & MAD (d) Standard Deviation after
Tukey Filtering

Fig. 4. Dispersion metrics evaluated for landscape generated using various values of SI (Dataset S1).

Fig. 5. Optimal Landscape for Dataset S1.

and the cluster centers may be evaluated using the data points

present in each catchment region. Based on Assumption-1

from Section III, we assert that cluster centers must be regional

maxima in LSopt. SIopt indicates the minimum size of the

structure that can be detected in the optimal landscape LSopt.
Using this observation, if a peak on LSopt has the maximum

height in its neighborhood of size X, given by:

X = 2[t1, t2, t3, ..., tD] (13)

centered at the peak, then that peak represents a cluster center.

Eq(13) is constructed from a geometric interpretation for the

condition to prevent overlapping clusters. Reflection shows

that the aforementioned might result in spurious clusters being

identified due to isolated data points in the dataset, far removed

from all the “real” clusters. To avoid such spurious detections,

only those maxima whose height is greater than the median of

the height data Z are chosen for further processing. In other

words, regional maxima whose height is less than the median

of the height data Z will not be considered as clusters. We

designate this as median filtering.

Accordingly, we can replace the Watershed algorithm with

a computationally simpler regional maxima finding algorithm

- we designate this as the Regional Maxima Finding approach.

Thus the number of regional maxima in LSopt is the number

of clusters “present” in the dataset, and the cluster centers are

given by projecting the maxima locations from LSopt to M
and in turn to the feature space spanned by the dataset Y. This

information (cluster count and cluster center locations) can

then be used by any partioning algorithm such as the k-means

algorithm to determine cluster labels for all the datapoints.

V. EXPERIMENTS & RESULTS

The method developed in Section IV was to be tested on

the datasets introduced in Section II. The algorithm was coded

in MATLAB, and numerical experiments quickly encountered

computational difficulties.

The experiments were stalled by memory limitations while

trying to compute M as described in Section IV-A. While

the data could have been scaled down so as to overcome the

memory limitations, what follows is an additional mechanism

that may be used in conjunction with the proposed method

to achieve a workable method, should similar limitations be

encountered while applying the proposed method to other

datasets.

A modified matrix representationM′ is constructed instead

of M and the rest of the algorithm proceeds as described

earlier.M′ is computed in a fashion similar toM, but instead

of using dcw as described in (6), d′cw is used, given by:

d′cw = SF
Pcp(d(yi,yj))

2
0 < SF < 1

(14)

where Pcp(d(yi,yj)) is the cp percentile value for the pair-

wise distances d(yi,yj)(∀i, j ∈ 1...n), and SF is a user

selected shrinkage factor. This definition will create M′ with

a much smaller memory requirement than M. However, total

preservation of structural information cannot be guaranteed.

Structural details smaller than d′cw will not be preserved. For

all the tests conducted herein, cp was set at 1. It is contended

that structural details with size less than 1 percentile of the

pairwise distances in the dataset should not significantly affect

the cluster structure. This contention can be easily verified

visually. The contention is further verified if the modified

definitions produce the “correct” result with the chosen value

of cp and several values of SF .

We note that this modification is proposed only for cases

where a computational limitation restricts the original method

altogether. Should a computational system be available such

that a given dataset can be processed without running into

storage limitations, this modification is not needed.



TABLE II
RESULTS - REGIONAL MAXIMA WITH MEDIAN FILTERING

SF S1 S2 S3 S4 A1 A2 A3 V1 V2 V3 Z1 Z2

0.400 15 15 15 15 20 35 50 10 9 13 441 49

0.425 15 15 15 15 20 35 50 10 9 13 441 49

0.450 15 15 15 15 20 35 50 10 9 13 441 49

0.475 15 15 15 15 20 35 50 10 9 13 441 49

0.500 15 15 15 15 20 35 50 10 9 13 441 49

0.525 15 15 15 15 20 35 50 10 9 14 441 49

0.550 15 15 15 15 20 35 50 10 9 13 1 49

0.575 15 15 15 15 20 35 50 10 9 13 1 49

0.600 15 15 15 15 20 35 50 10 9 13 1 49

0.625 15 15 15 15 20 35 50 10 9 13 1 50

0.650 15 15 15 15 20 35 50 10 9 14 1 49

0.675 15 15 15 15 20 35 50 10 9 13 1 50

0.700 15 15 15 15 20 35 50 10 9 13 1 49

0.725 15 15 15 15 20 35 50 10 9 15 1 50

0.750 15 15 15 15 20 35 50 10 9 13 49 49

0.775 15 15 15 15 20 35 50 10 9 13 36 49

0.800 15 15 15 15 20 35 50 10 9 19 16 49

0.825 15 15 15 15 20 35 50 10 9 13 9 50

0.850 15 15 15 15 20 35 50 10 9 13 1 49

0.875 15 15 15 15 20 35 50 10 9 13 1 50

0.900 15 15 15 15 20 35 50 10 9 13 1 49

0.925 15 15 15 15 20 35 50 10 9 13 1 49

0.950 15 15 15 15 20 35 50 10 9 13 1 50

0.975 15 15 15 15 20 35 50 10 9 14 1 49

1.000 15 15 15 15 20 35 50 10 9 13 30 50

← Number of Clusters →
- SF changes across rows and dataset changes across columns.
- Bold red entries indicate disagreement between actual cluster
count and cluster count reported by the algorithm.

Table II displays the results obtained using the method

proposed in Section IV in conjunction with the Regional

Maxima Finding approach for detecting cluster count and

cluster centers. Entries displayed in bold red in Table II

indicate cases where there is disagreement between the actual

cluster count (Table I) and the cluster count reported by

the method proposed. Fig.6a through 6l display results of

cluster detection (count & location) using the proposed method

overlaid on the original datasets with SF = 0.5. A standard

MATLAB implementation of the k-means algorithm was used

to determine the cluster labels for the data points. Results for

other values of SF are very similar.

Table II indicates that the method works well with S1-

S4,A1-A3 & V2. The method consistently picks only 10

clusters for dataset V1 instead of the perceivable 11, which

is likely due to the “low density” of the undetected cluster

as compared to the other clusters in the dataset (See Fig.6h).

Some experimental runs indicate an incorrect cluster count

for dataset V3, and these are cases where median filtering

fails to suppress the detection of spurious clusters. Fig.7a

and 7b display two such cases. Dataset Z1 has a perfect

square number of clusters in most cases. Fig.7c - 7d display

such clustering results. It can be seen from these figures that

these different perfect square counts are reported due to slight

structural differences introduced during the construction of the

modified matrix representation M′ using different values for

SF . The proposed method detects 49 clusters in dataset Z2 in

most cases, but sometimes a cluster count of 50 is reported.

It is suspected that this is also due to structural differences

introduced during the construction of the modified matrix

representation M′ using different values for SF .

VI. CONCLUSIONS

In this paper, an improved approach toward Watershed-

based clustering is presented. The improvements made are:

(1) An automatic method is given for selecting cell size,

based entirely on the data to be clustered itself, and eliminates

the need for experimentally determined parameters; (2) The

computationally intensive Watershed algorithm is replaced

with a much simpler regional maxima finding process; and

(3) An approach toward incorporating the concept of scale

while generating landscapes is introduced. The main advantage

of the proposed method is its unsupervised and automatic

nature requiring no parameters to be tuned or to be determined

experimentally.

The authors opine that future investigations should explore

issues such as: (1) optimal selection of SF and cp (where the

modified matrix representation M′ needs to be constructed)

to minimize loss of structural information; (2) construction of

statistical dispersion metrics that could be used to locate opti-

mal scale indices with improved fidelity; (3) methodologies to

handle spurious clusters in cases where median filtering fails;

(4) use of non-Gaussian kernels; and (5) further reduction of

computational complexity.
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